Skip to main content

Advertisement

Log in

Formation Mechanism of Thick Coal Seam in the Lower Indus Basin, SE Pakistan

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The energy sector and coal scientists have been enthusiastic about characterizing and understanding the vertical and lateral depositional systems of thick coal seam. However, there are no detailed studies that provide well-connected insight into the regional depositional characteristics of the thick coal seam in the Lower Indus Basin, SE Pakistan. Therefore, field emission scanning electron microscopy, scanning electron microscopy backscattered electron, electron probe microanalysis, X-ray powder diffraction spectrometry, Fourier transform infrared spectroscopy, Raman spectroscopy and coal facies were adopted to study major and subclassified maceral petrography and coal sequence stratigraphic characteristics; coal depositional models were then established. Preferential depositional systems were identified by low-stand system tracts, high-stand system tracts and transgressive system tracts and are likely to include shallow marine sequences that were propagated by slow to rapid regression. The high contents of telohuminite and detrohuminite indicate highly gelified and non-gelified tissue derived from angiosperms and herbaceous plants, which were the most prevalent. The qualitative analysis of the function group suggests peaks, hence stretching the region band adsorption intensity of the particle. Major identified features of Raman spectra with hidden peak intensities tend to include the oscillation of energy particles due to the carbon crystallinity and high reflectance of mineral surfaces. The extensive lateral depositional analytical models revealed that the thick coal seam was deposited in the upper delta during waterlogged/wet and dry cyclic conditions, which were the most prevalent in the mires. This continuation of wet–dry cyclic conditions moves quickly to humification and gelification. Environmental changes led to the accumulation and transformation of organic matter, which resulted in the formation of thick peat deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Ashraf, U., Zhang, H., Anees, A., Ali, M., Zhang, X., Shakeel Abbasi, S., & Mangi, H. N. (2020). Controls on reservoir heterogeneity of a shallow-marine reservoir in Sawan gas field, SE Pakistan: Implications for reservoir quality prediction using acoustic impedance inversion. Water, 12(11), 2972.

    Article  Google Scholar 

  • Ashraf, U., Zhang, H., Anees, A., Mangi, H. N., Ali, M., Zhang, X., Imraz, M., Abbasi, S. S., Abbas, A., & Ullah, Z. (2021). A core logging, machine learning and geostatistical modeling interactive approach for subsurface imaging of lenticular geobodies in a clastic depositional system, SE Pakistan. Natural Resources Research, 30(3), 2807–2830.

    Article  Google Scholar 

  • Ashraf, U., Zhu, P., Yasin, Q., Anees, A., Imraz, M., Mangi, H. N., & Shakeel, S. (2019). Classification of reservoir facies using well log and 3D seismic attributes for prospect evaluation and field development: A case study of Sawan gas field, Pakistan. Journal of Petroleum Science and Engineering, 175, 338–351.

    Article  Google Scholar 

  • Aziz, H., Ehsan, M., Ali, A., Khan, H. K., & Khan, A. (2020). Hydrocarbon source rock evaluation and quantification of organic richness from correlation of well logs and geochemical data: A case study from the sembar formation, Southern Indus Basin, Pakistan. Journal of Natural Gas Science and Engineering, 81, 103433.

    Article  Google Scholar 

  • Bechtel, A., Karayigit, A. I., Bulut, Y., Mastalerz, M., & Sachsenhofer, R. F. (2016). Coal characteristics and biomarker investigations of Dombayova coals of Late Miocene– Pliocene age (Afyonkarahisar-Turkey). Organic geochemistry, 94, 52–67.

    Article  Google Scholar 

  • Burg, J.-P. (2018). Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Science Reviews, 185, 1210–1231.

    Article  Google Scholar 

  • Catuneanu, O. (2006). Principles of sequence stratigraphy. Elsevier.

    Google Scholar 

  • Catuneanu, O., et al. (2009). Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92, 1–33.

    Article  Google Scholar 

  • Chakravarty, S., Chakravarty, K., Mishra, V., Chakladar, S., Mohanty, A., & Sharma, M. (2020). Characterisation of chemical structure with relative density of three different ranks of coal from India. Natural Resources Research, 29, 3121–3136.

    Article  Google Scholar 

  • Chatterjee, S., & Bajpai, S. (2016). India’s northward drift from Gondwana to Asia during the Late Cretaceous-Eocene. Proceeding of the Indian National Science Academy, 82(3), 479–487.

    Google Scholar 

  • Cornelissen, G., Kukulska, Z., Kalaitzidis, S., Christanis, K., & Gustafsson, Ö. (2004). Relations between environmental black carbon sorption and geochemical sorbent characteristics. Environmental Science & Technology, 38, 3632–3640.

    Article  Google Scholar 

  • Dai, S., Bechtel, A., Eble, C. F., Flores, R. M., French, D., Graham, I. T., Hood, M. M., Hower, J. C., Korasidis, V. A., Moore, T. A., Püttmann, W., Wei, Q., Zhao, L., & O’Keefe, J. M. K. (2020). Recognition of peat depositional environments in coal: A review. International Journal of Coal Geology., 219, 103383.

    Article  Google Scholar 

  • Dai, S., Zhang, W., Seredin, V. V., Ward, C. R., Hower, J. C., Song, W., Wang, X., Li, X., Zhao, L., Kang, H., Zheng, L., Wang, P., & Zhou, D. (2013). Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. International Journal of Coal Geology, 109(11), 77–100.

    Article  Google Scholar 

  • Dai, S. F., Ji, D. P., Ward, C. R., French, D., Hower, J. C., Yan, X. Y., & Wei, Q. (2018). Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. International Journal of Coal Geology, 197, 84–114.

    Article  Google Scholar 

  • Diessel, C.F.K. (1986). On the correlation between coal facies and depositional environments. In Proceeding of 20th symposium of Department Geology. University of Newcastle, NSW Australia (pp. 19-22).

  • Diessel, C. F. K. (1992). Coal-bearing depositional systems (p. 721). Springer-Verlag.

    Book  Google Scholar 

  • Diessel, C., Boyd, R., Wadsworth, J., Leckie, D., & Chalmers, G. (2000). On balanced and unbalanced accommodation/peat accumulation ratios in the Cretaceous coals from Gates Formation, Western Canada, and their sequence-stratigraphic significance. International Journal of Coal Geology, 43, 143–186.

    Article  Google Scholar 

  • Drobniak, A., & Mastalerz, M. (2006). Chemical evolution of Miocene wood: Example from the Belchatow brown coal deposit, central Poland. International Journal of Coal Geology, 66, 157–178.

    Article  Google Scholar 

  • Fassett, J.E., Durrani, N.A. (1994). Geology and coal resources of the Thar Coal Field, Sindh Province, Pakistan, 2331–1258.

  • Ganz, H., & Kalkreuth, W. (1987). Application of infrared spectroscopy to the classification of kerogentypes and the evaluation of source rock and oil shale potentials. Fuel, 66, 708–711.

    Article  Google Scholar 

  • Gómez Rojas, O. P., Blandón, A., Perea, C., & Mastalerz, M. (2020). Petrographic characterisation, variations in chemistry, and paleoenvironmental interpretation of Colombian coals. International Journal of Coal Geology, 227, 103516.

    Article  Google Scholar 

  • Greb, S.F., Eble, C.F., Hower, J.C., Andrews, W.M. (2002). Multiple-bench architecture and interpretation of original mire phases-Examples from the Middle Pennsylvanian of the Central Appalachian Basin, USA.

  • Guo, B., Shao, L., Hilton, J., Wang, S., & Zhang, L. (2018). Sequence stratigraphic interpretation of peatland evolution in thick coal seams: Examples from Yimin Formation (Early Cretaceous), Hailaer Basin, China. International Journal of Coal Geology, 196, 211–231.

    Article  Google Scholar 

  • Haider, R., Ghauri, M. A., Jones, E. J., & SanFilipo, J. R. (2014). Methane generation potential of Thar lignite samples. Fuel Processing Technology., 126, 309–314.

    Article  Google Scholar 

  • Hatch, J. R., & Leventhal, J. S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology., 99, 65–82.

    Article  Google Scholar 

  • Havelcová, M., Sýkorová, I., Trejtnarová, H., & Šulc, A. (2012). Identification of organic matter in lignite samples from basins in the Czech Republic: Geochemical and petrographic properties in relation to lithotype. Fuel, 99, 129–142.

    Article  Google Scholar 

  • Hayashi, K.-I., Fujisawa, H., Holland, H. D., & Ohmoto, H. J. (1997). Geochemistry of∼ 1.9 Ga sedimentary rocks from northeastern Labrador Canada. Geochimica et Cosmochimica Acta, 61(19), 4115–4137.

    Article  Google Scholar 

  • ICCP. (2001). The new inertinite classification (ICCP system 1994), international committee for coal and organic petrology. Fuel, 80, 459–471.

    Article  Google Scholar 

  • ISO, 2009. Methods for the petrographic analysis of bituminous coal and anthracite—Part 2 (7404–2): Methods of preparing coal samples, 8(p); Part 3 (7404–3): Methods of determining maceral group composition, 4(p); Part 5 (7404–5): Methods of Determining microscopically the reflectance of vitrinite, 11(p). International Organization for Standardization, ISO, Geneva.

  • Kalaitzidis, S., Papazisimou, S., Bouzinos, A., & Christanis, K. (2004). A short-term establishment of forest fen habitant during Pliocene lignite formation in the Ptolemais Basin, NW Macedonia Greece. International Journal of Coal Geology, 57, 243–263.

    Article  Google Scholar 

  • Kalkreuth, W., & Leckie, D. A. (1989). Sedimentological and petrographical characteristics of Cretaceous strandplain coals: A model for coal accumulation from the North American Western Interior Seaway. International Journal of Coal Geology., 12, 381–424.

    Article  Google Scholar 

  • Kalkreuth, W. D., Marchioni, D. L., Calder, J. H., Lamberson, M. N., Naylor, R. D., & Paul, J. (1991). The relationship between coal petrography and depositional environments from selected coal basins in Canada. International Journal of Coal Geology, 19, 21–76.

    Article  Google Scholar 

  • Karayiğit, A. I., Bircan, C., Mastalerz, M., Oskay, R. G., Querol, X., Lieberman, N. R., & Türkmen, I. (2017). Coal characteristics, elemental composition and modes of occurrence of some elements in the İsaalan coal (Balıkesir, NW Turkey). International Journal of Coal Geology, 172, 43–59.

    Article  Google Scholar 

  • Kemal, A., Balkwill, H. R., & Stoakes, F. A. (1991). Indus Basin hydrocarbon plays. In New directions and strategies for accelerating petroleum exploration and production in Pakistan: Proceedings, international petroleum seminar (pp. 76–105).

  • Khan, P. K., Mohanty, S. P., Sinha, S., & Singh, D. (2016). Occurrences of large-magnitude earthquakes in the Kachchh region, Gujarat, western India: Tectonic implications. Tectonophysics, 679, 102–116.

    Article  Google Scholar 

  • Kumar, P. (2012a). Palynological investigation of coal-bearing deposits of the Thar Coal Field Sindh, Pakistan. Dissertations in Geology at Lund University.

  • Kumar, P., 2012b, Palynological investigation of coal-bearing deposits of the Thar Coal Field Sindh, Pakistan: Dissertations in Geology at Lund University, v. No. 322, 31 pp. 45 hp.

  • Li, X., Hayashi, J.-I., & Li, C.-Z. (2006). FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel, 85, 1700–1707.

    Article  Google Scholar 

  • Lis, G. P., Mastalerz, M., Schimmelmann, A., Lewan, M. D., & Stankiewicz, B. A. (2005). FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type- II kerogens from Devonian black shales. Organic Geochemistry, 36, 1533–1552.

    Article  Google Scholar 

  • Lu, J., Shao, L., Yang, M., Zhou, K., Wheeley, J. R., Wang, H., & Hilton, J. (2017). Depositional model for peat swamp and coal facies evolution using sedimentology, coal macerals, geochemistry and sequence stratigraphy. Journal of Earth Science, 28(6), 1163–1177.

    Article  Google Scholar 

  • Malkani, M. S., & Mahmood, Z. (2017). Coal Resources of Pakistan: Entry of new coalfields. Information Release, Geological Survey of Pakistan, 980, 1–28.

    Google Scholar 

  • Mangi, H. N., Chi, R., DeTian, Y., Sindhu, L., Lijin, He, D., Ashraf, U., Fu, H., Zixuan, L., Zhou, W., & Anees, A. (2022). The ungrind and grinded effects on the pore geometry and adsorption mechanism of the coal particles. Journal of Natural Gas Science and Engineering, 100, 104463. https://doi.org/10.1016/j.jngse.2022.104463

    Article  Google Scholar 

  • Mangi, H. N., Detian, Y., Hameed, N., Ashraf, U., & Rajpar, R. H. (2020). Pore structure characteristics and fractal dimension analysis of low rank coal in the Lower Indus Basin, SE Pakistan. Journal of Natural Gas Science and Engineering, 77, 103231.

    Article  Google Scholar 

  • Mastalerz, M., Hower, J. C., & Taulbee, D. N. (2013). Variations in chemistry of macerals as reflected by micro-scale analysis of a Spanish coal. Geologica Acta, 11(4), 483–493.

    Google Scholar 

  • Mathews, R. P., Tripathi, S. M., Banerjee, S., & Dutta, S. (2013). Palynology, palaeoecology and palaeodepositional environment of Eocene lignites and associated sediments from Matanomadh mine, Kutch Basin, western India. Journal of the Geological Society of India, 82(3), 236–248.

    Article  Google Scholar 

  • McCabe, P.J., Parrish, J.T. (1992). Tectonic and climatic controls on Cretaceous coals, in McCabe, P.J., and Parrish, J.T., eds., Controls on the Distribution and Quality of Cretaceous Coals: Geological Society of America, Special Paper, 267, 1–15.

  • Merlen, A., Buijnsters, J., & Pardanaud, C. (2017). A Guide to and Review of the Use of Multiwavelength Raman Spectroscopy for Characterising Defective Aromatic Carbon Solids: From Graphene to Amorphous Carbons. Coatings, 7, 153.

    Article  Google Scholar 

  • Moore, T., & Shearer, J. (2003). Peat/coal type and depositional environment—are they related? International Journal of Coal Geology, 56(3–4), 233–252.

    Article  Google Scholar 

  • Mukhopadhyay, P. (1989). Organic petrography and organic geochemistry of tertiary coals from texas in relation to depositional environment and hydrocarbon generation. Report of Investigations, Bureau of Economic Geology, Texas. 118-pp.

  • O’Keefe, J. M., Hower, J. C., Finkelman, R. F., Drew, J. W., & Stucker, J. (2011). Petrographic, geochemical, and mycological aspects of Miocene coals from the Nováky and Handlová mining districts. Slovakia. International Journal of Coal Geology, 87(3–4), 268–281.

    Article  Google Scholar 

  • Oskay, R., Christanis, K., Inaner, H., Salman, M., & Taka, M. (2016). Palaeoenvironmental reconstruction of the eastern part of the Karapınar-Ayrancı coal deposit (Central Turkey). International Journal of Coal Geology, 163, 100–111.

    Article  Google Scholar 

  • Owen, D. D., Shouakar-Stash, O., Morgenstern, U., & Aravena, R. (2016). Thermodynamic and hydrochemical controls on CH4 in a coal seam gas and overlying alluvial aquifer: New insights into CH4 origins. Science Reports, 6, 32407.

    Article  Google Scholar 

  • Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K., Cardott, B., Misz-Kennan, M., Rodrigues, S., Hentschel, A., & Hamor-Vido, M. (2017). Classification of liptinite–ICCP System 1994. International Journal of Coal Geology, 169, 40–61.

    Article  Google Scholar 

  • Platt, J. P., Leggett, J. K., Young, J., Raza, H., & Alam, S. (1985). Large-scale sediment under plating in the Makran accretionary prism. Geology, 13(7), 507–511.

    Article  Google Scholar 

  • Plint, A. G., and D. Nummedal, 2000, The falling stage systems tract: Recognition and importance in sequence stratigraphic analysis. In Hunt, D., Gawthorpe, R. L. (eds) Sedimentary Response to Forced Regression: London, Geological Society, Special Publication (vol. 172, pp. 1–17).

  • Prasad, V., Singh, I. B., Bajpai, S., Garg, R., Thakur, B., Singh, A., Saravanan, N., & Kapur, V. V. (2013). Palynofacies and sedimentology-based high-resolution sequence stratigraphy of the lignite- bearing muddy coastal deposits (Early Eocene) in the Vastan Lignite Mine, Gulf of Cambay, India. Facies, 59, 737–761.

    Article  Google Scholar 

  • Quirico, E., Bonal, L., Montagnac, G., Beck, P., & Reynard, B. (2020). New insights into the structure and formation of coals, terrestrial and extraterrestrial kerogens from resonant UV Raman spectroscopy. Geochimica et Cosmochimica Acta, 282, 156–176.

    Article  Google Scholar 

  • Ryer, T. A., & Langer, A. W. (1980). Thickness change involved in the peat-to-coal transformation for a bituminous coal of Cretaceous age in central Utah. Journal of Sedimentary Research, 50(3), 987–992.

    Google Scholar 

  • Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43(8), 1731–1742.

    Article  Google Scholar 

  • Scotese, C.P., Golonka, J. (1992). PALEOMAP Paleogeography Atlas, PALEOMAP Progress. Report No. 20. Department of Geology, University of Texas, Arlington, Texas.

  • Shearer, J. C., Staub, J. R., & Moore, T. A. (1994). The conundrum of coal bed thickness: A theory for stacked mire sequences. The Journal of Geology, 102(5), 611–617.

    Article  Google Scholar 

  • Shen, J., Qin, Y., Wang, J., Shen, Y., & Wang, G. (2018). Peat-forming environments and evolution of thick coal seam in Shengli Coalfield, China: Evidence from geochemistry, coal petrology, and palynology. Minerals, 8, 82.

    Article  Google Scholar 

  • Siavalas, G., Linou, M., Chatziapostolou, A., Kalaitzidis, S., Papaefthymiou, H., & Christanis, K. (2009). Palaeoenvironment of seam I in the Marathousa lignite mine, Megalopolis basin (Southern Greece). International Journal of Coal Geology, 78(4), 233–248.

    Article  Google Scholar 

  • Siddiqui, F. I., Pathan, A. G., Ünver, B., Tercan, A. E., Hindistan, M. A., Ertunç, G., Atalay, F., Ünal, S., & Kıllıoğlu, Y. (2015). Lignite resource estimations and seam modeling of Thar Field, Pakistan. International Journal of Coal Geology, 140, 84–96.

    Article  Google Scholar 

  • Singh, A., Mahesh, S., Singh, H., Tripathi, S. K., & Singh, B. D. (2013). Characterization of Mangrol lignite (Gujarat), India: Petrography, palynology, and palynofacies. International journal of coal geology, 120, 82–94.

    Article  Google Scholar 

  • Singh, P. K., Singh, M. P., & Singh, A. K. (2010). Petro-chemical characterization and evolution of Vastan Lignite, Gujarat. India. International Journal of Coal Geology, 82(1–2), 1–16.

    Google Scholar 

  • Singh, P. K., Rajak, P. K., Singh, V. K., Singh, M. P., Naik, A. S., & Raju, S. V. (2016). Studies on thermal maturity and hydrocarbon potential of lignites of Bikaner-Nagaur basin, Rajasthan. Energy Exploration & Exploitation, 34, 140–157.

    Article  Google Scholar 

  • Singh, V. K., Rajak, P. K., & Singh, P. K. (2019). Revisiting the paleomires of western India: An insight into the early Paleogene lignite Corridor. Journal of Asian Earth Sciences, 171, 363–375.

    Article  Google Scholar 

  • Snyman, C. (1989). The role of coal petrography in understanding the properties of South African coal. International Journal of Coal Geology, 14(1–2), 83–101.

    Article  Google Scholar 

  • Stach, E., Mackrowsky, MTh., Teichmuller, M., Taylor, G. H., Chandra, D., & Teichmuller, R. (1982). Stach’s textbook of coal petrology, 3rd ed. Gebruder Borntraeger (p. 535).

    Google Scholar 

  • Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstone composition and paleoclimate, I, Framework mineralogy. Journal of Sedimentary Petrology, 56, 329–345.

    Google Scholar 

  • Sýkorová, I., Pickel, W., Christanis, K., Wolf, M., Taylor, G. H., & Flores, D. (2005). Classification of huminite— ICCP System 1994. International Journal of Coal Geology, 62, 85–106.

    Article  Google Scholar 

  • Taylor, G. H., Teichmqller, M., Davis, A., Diessel, C. F. K., Littke, R., & Robert, P. (1998). Organic petrology. Gebrqder Borntraeger.

    Google Scholar 

  • Thomas, L. (2002). Coal geology. Wiley-Blackwell.

    Google Scholar 

  • Varma, A. K., Biswal, S., Hazra, B., Mendhe, V. A., Misra, S., Samad, S. K., Singh, B. D., Dayal, A. M., & Mani, D. (2015). Petrographic characteristics and methane sorption dynamics of coal and shaly-coal samples from Ib Valley Basin, Odisha, India. International Journal of Coal Geology, 141, 51–62.

    Article  Google Scholar 

  • Wandrey, C.J., Law, B., Shah, H.A. (2004). Sembar Goru/Ghazij composite total petroleum system, Indus and Sulaiman-Kirthar geologic provinces, Pakistan and India. US Department of the Interior, US Geological Survey.

  • Wang, G., Zhang, J., Chang, W., Li, R., Li, Y., & Wang, C. (2018). Structural features and gasification reactivity of biomass chars pyrolysed in different atmospheres at high temperature. Energy, 147, 25–35.

    Article  Google Scholar 

  • Wang, S., Shao, L., Wang, D., Hilton, J., Guo, B., & Lu, J. (2020). Controls on accumulation of anomalously thick coals: Implications for sequence stratigraphic analysis. Sedimentology, 67(2), 991–1013.

    Article  Google Scholar 

  • Ward, C. R. (2016). Analysis, origin and significance of mineral matter in coal: An updated review. International Journal of Coal Geology., 165, 1–27.

    Article  Google Scholar 

  • Yan, D., Li, S., Fu, H., Jasper, D. M., Zhou, S., Yang, X., Zhang, B., & Mangi, H. N. (2021). Mineralogy and geochemistry of Lower Silurian black shales from the Yangtze platform, South China. International Journal of Coal Geology., 237, 103706.

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully thanks Mama Jasmine Chakori for always supporting and encouraging me. The authors greatly thank the Geological Survey of Pakistan (GSP), Karachi, Sindh, Pakistan, for providing the facilities to carry out this study. Special thanks go to Dr. John Carranza, Editor-in-Chief of Natural Resources Research and two anonymous reviewers for their valuable comments to improve the work. Author special thanks to Ms. Pirah Mangi. This work was financially supported by the National Natural Science Foundation of China (41972179, 41690131), the Natural Science Foundation of Hubei Province (2019CFA028), and the Programme of Introducing Talents of Discipline to Universities (No. B14031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflict of Interests

All authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangi, H.N., Chi, R., Zhao, J. et al. Formation Mechanism of Thick Coal Seam in the Lower Indus Basin, SE Pakistan. Nat Resour Res 32, 257–281 (2023). https://doi.org/10.1007/s11053-022-10145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10145-5

Keywords

Navigation