Skip to main content

Advertisement

Log in

Mineralized-Anomaly Identification Based on Convolutional Sparse Autoencoder Network and Isolated Forest

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

According to the characteristic that mineralized-anomaly samples have larger reconstruction errors, traditional autoencoder networks have been applied widely in mineralized-anomaly identification. However, they easily ignore spatial coupling information of multi-source ore-indicating factors have lower generalization abilities caused by excessive feature redundancies, and rely on known non-mineralization samples when they are utilized in mineralized-anomaly identification. This paper utilizes a convolutional sparse autoencoder network for realizing mineralized-anomaly identification. The proposed method retains the extraction of spatial coupling correlations of geological and geochemical variables through the addition of convolutional operations, learning the relationship between mineralized-features and the locations of mineralization, and being conducive to analyzing results with geological structures. The establishment of sparse terms of using ReLU activation functions and adding sparsity constraints into the objective loss function improves the generalization ability of the whole network through suppression of several feature units to reduce redundant features. Moreover, the isolated forest is employed as an autonomous extractor of background multichannel image samples, overcoming the limitation of traditional autoencoder networks that rely on labeled non-mineralization samples. The integration of convolutional sparse autoencoder network and isolated forest can accurately predict more known mineral deposits (68.96%) in smaller prospective areas (16.77%) in the Fengxian District, Shaanxi Province, China. The obtained mineralized-anomaly map reveals that most of the known mineralization is distributed in the delineated areas of larger reconstruction errors, demonstrating that this approach can effectively identify mineralized-anomalies without relying on prior knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Availability of Data and Material

The datasets analyzed during the current study are not publicly available because the exploration data used in this paper is confidential.

Code Availability

Name of code: Mineral-Prospectivity-Prediction-by-CSAE.

Developer and contact details: Na Yang, School of Automation, Northwestern Polytechnical University, 710029, China; e-mail: yangnalys@mail.nwpu.edu.cn.

Available time: three months.

Hardware required: a computer with 1.8 GHz and 16 GB.

Software required: Python Spyder and Torch, Scikit-learn and Numpy packages.

Program language: the code is written in Python 3.6.

Program size: 32 Kb.

The source files can be downloaded from Github: https://github.com/yangna815/Mineral-Prospectivity-Prediction-by-CSAE.

References

  • Abedi, M., Norouzi, G., & Bahroudi, A. (2012). Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences, 46, 272–283.

    Article  Google Scholar 

  • Cai, H., Chen, S., Xu, Y., Li, Z., Ran, X., Wen, X., Li, Y., & Men, Y. (2021). Intelligent recognition of ore-forming anomalies based on multisource data fusion: A case study of the Daqiao mining area, Gansu Province, China. Earth and Space Science, 8(11), 1–12.

    Article  Google Scholar 

  • Cai, H., Xu, Y., Li, Z., Cao, H., Feng, Y., Chen, S., & Li, Y. (2019). The division of metallogenic prospective areas based on convolutional neural network model: A case study of the Daqiao gold polymetallic deposit. Geological Bulletin of China, 38(12), 1999–2009.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of random forests algorithm. Ore Geology Reviews, 71, 777–787.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.

    Article  Google Scholar 

  • Chen, G., Huang, N., Wu, G., Luo, L., Wang, D., & Cheng, Q. (2022). Mineral prospectivity mapping based on wavelet neural network and Monte Carlo simulations in the Nanling W-Sn metallogenic province. Ore Geology Reviews, 143, 104765.

    Article  Google Scholar 

  • Chen, L., Guan, Q., Xiong, Y., Liang, J., Wang, Y., & Xu, Y. (2019). A spatially constrained multi-autoencoder approach for multivariate geochemical anomaly recognition. Computers & Geosciences, 125, 43–54.

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2017a). Mapping mineral prospectivity by using one-class support vector machine to identify multivariate geological anomalies from digital geological survey data. Australian Journal of Earth Sciences, 64(5), 639–651.

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2017b). Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochemistry: Exploration, Environment, Analysis, 17(3), 231–238.

    Google Scholar 

  • Chen, Y., Sun, G., & Zhao, Q. (2021). Distance anomaly factors for gold potential mapping in the Jinchanggouliang area, Inner Mongolia, China. Earth Science Informatics, 14(2), 1083–1099.

    Article  Google Scholar 

  • Ding, K., Xue, L., Ran, X., Wang, J., & Yan, Q. (2022). Siamese network based prospecting prediction method: A case study from the Au deposit in the Chongli mineral concentrate area in Zhangjiakou, Hebei Province, China. Ore Geology Reviews, 148, 105024.

    Article  Google Scholar 

  • Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16–28.

    Article  Google Scholar 

  • Gui, Z., Chen, J., & Wang, C. (2018). Classification and forecasting of geological anomaly based on GEP-logistic regression: A case study from geochemical data of eastern Tianshan. Journal of Guilin University of Technology, 38(01), 34–40.

    Google Scholar 

  • Li, H., Li, X., Yuan, F., Jowitt, S. M., Zhang, M., Zhou, J., Zhou, T., Li, X., Ge, C., & Wu, B. (2020). Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian-Zhangbaling area, Anhui Province, China. Applied Geochemistry, 122, 1047.

    Article  Google Scholar 

  • Li, S., Chen, J., & Xiang, J. (2019a). Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data. Neural Computing & Applications, 32(7), 2037–2053.

    Article  Google Scholar 

  • Li, S., Chen, J., Jie, X., Zhang, Z., & Zhang, Y. (2019b). Two-dimensional prospecting prediction based on AlexNet network: A case study of sedimentary Mn deposits in Songtao-Huayuan area. Geological Bulletin of China, 38(12), 2022–2032.

    Google Scholar 

  • Li, T., Zuo, R., Xiong, Y., & Peng, Y. (2021a). Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping. Natural Resources Research, 30(1), 27–38.

    Article  Google Scholar 

  • Li, T., Zuo, R., Zhao, X., & Zhao, K. (2022). Mapping prospectivity for regolith-hosted REE deposits via convolutional neural network with generative adversarial network augmented data. Ore Geology Reviews, 142, 104693.

    Article  Google Scholar 

  • Li, W., Zang, G., Wang, L., Wang, X., Zang, X., Dong, J., et al. (2021b). Characteristics of lead-zinc deposits and geological model for prospecting prediction in Fengtai ore concentration area, Shaanxi Province. Mineral Exploration, 12(9), 1907–1915.

    Google Scholar 

  • Liu, F. T., Ting, K. M., & Zhou, Z. (2008). Isolation forest. In Proceedings of the 8th international conference on data mining, IEEE Computer Society (pp. 413–422).

  • Liu, F. T., Ting, K. M., & Zhou, Z. (2012). Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data, 6(1), 1–39.

    Article  Google Scholar 

  • Liu, L., Lu, J., Tao, C., Liao, S., Su, C., Huang, N., & Xu, X. (2022). Fuzzy forest machine learning predictive model for mineral prospectivity: A Case Study on Southwest Indian Ridge 48.7°E–50.5°E. Natural Resources Research, 31(1), 99–116.

    Article  Google Scholar 

  • Liu, Y., Zhu, L., & Zhou, Y. (2018). Application of convolutional neural network in prospecting prediction of ore deposits: Taking the Zhaojikou Pb-Zn ore deposit in Anhui Province as a case. Acta Petrologica Sinica, 34(11), 3217–3224.

    Google Scholar 

  • Luo, Z., Zuo, R., & Xiong, Y. (2022). Visual interpretable deep learning algorithm for geochemical anomaly recognition. Natural Resources Research. https://doi.org/10.1007/s11053-022-10080-5

    Article  Google Scholar 

  • Luo, Z., Zuo, R., Xiong, Y., & Wang, X. (2021). Detection of geochemical anomalies related to mineralization using the GANomaly network. Applied Geochemistry, 131, 105043.

    Article  Google Scholar 

  • McKay, G., & Harris, J. R. (2015). Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research, 2(25), 125–143.

    Google Scholar 

  • Parsa, M. (2021). A data augmentation approach to XGboost-based mineral potential mapping: An example of carbonate-hosted Zn Pb mineral systems of Western Iran. Journal of Geochemical Exploration, 228, 106811.

    Article  Google Scholar 

  • Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.

    Article  Google Scholar 

  • Sun, T., Chen, F., Zhong, L., Liu, W., & Wang, Y. (2019). GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China. Ore Geology Reviews, 109, 26–49.

    Article  Google Scholar 

  • Tao, J., Zhang, N., Chang, J., Chen, L., Zhang, H., & Chi, Y. (2022). Unlabeled sample selection for mineral prospectivity mapping by semi-supervised support vector machine. Natural Resources Research. https://doi.org/10.1007/s11053-022-10093-0

    Article  Google Scholar 

  • Wang, B., Wang, R., Wang, H., Zhang, G., & Li, Q. (2020). Potential and geophysical prospecting direction of Pb-Zn mineral resources in the deep area of Fengtai ore-gathering area, Shaanxi, China. Journal of Earth Sciences and Environment, 42(6), 808–818.

    Google Scholar 

  • Wang, J., Zuo, R., & Xiong, Y. (2019a). Mapping mineral prospectivity via semi-supervised random forest. Natural Resources Research, 29(1), 189–202.

    Article  Google Scholar 

  • Wang, R., Zhang, G., Li, Q., Zhang, B., Huan, C., & Ji, Y. (2021). Metallogenic regularity and prospecting prediction of Fengtai Pb–Zn–Au ore con-centration area in Qinling, China. Journal of Earth Sciences and Environment, 43(3), 528–548.

    Google Scholar 

  • Wang, Y., Zhao, R., Du, B., & Zhang, Z. (2022). Geological characteristics and metallogenic regularity of typical gold deposits in Fengtai ore concentration area, Shaanxi Province. Geological Survey of China, 9(2), 63–72.

    Google Scholar 

  • Wang, Z., & Zuo, R. (2022). Mineral prospectivity mapping using a joint singularity-based weighting method and long short-term memory network. Computers & Geosciences, 158, 104974.

    Article  Google Scholar 

  • Wang, Z., Zuo, R., & Dong, Y. (2019b). Mapping geochemical anomalies through integrating random forest and metric learning methods. Natural Resources Research, 28(4), 1285–1298.

    Article  Google Scholar 

  • Wei, L., Yang, W., Ma, S., Xu, T., & Yang, Z. (2021). Research of regional metallogenic regularity of lead-zinc-gold deposits in Fengtai ore concentration area, Qinling. Mineral Resources and Geology, 35(1), 1–8.

    Google Scholar 

  • Xiao, F., Chen, W., Wang, J., & Erten, O. (2022). A hybrid logistic regression: Gene expression programming model and its application to mineral prospectivity mapping. Natural Resources Research, 31(4), 2041–2064.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2016). Recognition of geochemical anomalies using a deep autoencoder network. Computers & Geosciences, 86, 75–82.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2018). GIS-based rare events logistic regression for mineral prospectivity mapping. Computers & Geosciences, 111, 18–25.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2021a). A positive and unlabeled learning algorithm for mineral prospectivity mapping. Computers & Geosciences, 147, 104667.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2021b). Robust feature extraction for geochemical anomaly recognition using a stacked convolutional denoising autoencoder. Mathematical Geosciences, 54(3), 623–644.

    Article  Google Scholar 

  • Xiong, Y., Zuo, R., & Carranza, E. J. M. (2018). Mapping mineral prospectivity through big data analytics and a deep learning algorithm. Ore Geology Reviews, 102, 811–817.

    Article  Google Scholar 

  • Xu, Y., Li, Z., Xie, Z., Cai, H., Niu, P., & Liu, H. (2021). Mineral prospectivity mapping by deep learning method in Yawan-Daqiao area, Gansu. Ore Geology Reviews, 138, 104316.

    Article  Google Scholar 

  • Xu, Y., Li, Z., Xie, Z., Feng, B., & Chen, H. (2020). Prediction of copper mineralization based on semi-supervised neural network. Earth Science, 45(12), 4563–4573.

    Google Scholar 

  • Yang, N., Zhang, Z., Yang, J., & Hong, Z. (2022a). Applications of data augmentation in mineral prospectivity prediction based on convolutional neural networks. Computers & geosciences, 161, 105075.

    Article  Google Scholar 

  • Yang, N., Zhang, Z., Yang, J., & Hong, Z. (2022b). Mineral prospectivity prediction by integration of convolutional autoencoder network and random forest. Natural Resources Research, 31(3), 1103–1119.

    Article  Google Scholar 

  • Yang, N., Zhang, Z., Yang, J., Hong, Z., & Shi, J. (2021). A convolutional neural network of GoogLeNet applied in mineral prospectivity prediction based on multi-source geoinformation. Natural Resources Research, 30(6), 3905–3923.

    Article  Google Scholar 

  • Yin, B., Zuo, R., & Xiong, Y. (2022). Mineral prospectivity mapping via gated recurrent unit model. Natural Resources Research, 31(4), 2065–2079.

    Article  Google Scholar 

  • Zhang, C., & Zuo, R. (2021). Recognition of multivariate geochemical anomalies associated with mineralization using an improved generative adversarial network. Ore Geology Reviews, 136, 104264.

    Article  Google Scholar 

  • Zhang, C., Zuo, R., & Xiong, Y. (2021a). Detection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature method. Applied Geochemistry, 130, 104994.

    Article  Google Scholar 

  • Zhang, C., Zuo, R., Xiong, Y., Zhao, X., & Zhao, K. (2022a). A geologically-constrained deep learning algorithm for recognizing geochemical anomalies. Computers & Geosciences, 162, 105100.

    Article  Google Scholar 

  • Zhang, D., Ren, N., & Hou, X. (2018). An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1.0) and its application to mineral prospectivity mapping. Geoscientific Model Development, 11(6), 2525–2539.

    Article  Google Scholar 

  • Zhang, G., Zhang, B., & Yuan, X. (2001). Qinling orogenic belt and continental dynamics. Science Press.

    Google Scholar 

  • Zhang, S., Carranza, E. J. M., Wei, H., Xiao, K., Yang, F., Xiang, J., et al. (2021b). Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network. Natural Resources Research, 30(2), 1011–1031.

    Article  Google Scholar 

  • Zhang, S., Carranza, E. J. M., Xiao, K., Wei, H., Yang, F., Chen, Z., et al. (2022b). Mineral prospectivity mapping based on isolation forest and random forest: Implication for the existence of spatial signature of mineralization in outliers. Natural Resources Research, 31(4), 1981–1999.

    Article  Google Scholar 

  • Zhou, S., Zhou, K., Cui, Y., Wang, J., Wang, W., & Ding, J. (2016). Application of logistic regression methods in geochemical data analysis and mineral exploration: Example from Karamay region. Northwestern Geology, 49(01), 234–240.

    Google Scholar 

  • Zhou, Y., Zhang, Z., Yang, J., Ge, Y., & Cheng, Q. (2022). Machine learning and singularity analysis reveal zircon fertility and magmatic intensity: Implications for porphyry copper potential. Natural Resources Research. https://doi.org/10.1007/s11053-022-10122-y

    Article  Google Scholar 

  • Zuo, R. (2020). Geodata science-based mineral prospectivity mapping: A review. Natural Resources Research, 29(6), 3415–3424.

    Article  Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences, 37(12), 1967–1975.

    Article  Google Scholar 

  • Zuo, R., & Xiong, Y. (2017). Big data analytics of identifying geochemical anomalies supported by machine learning methods. Natural resources research, 27(1), 5–13.

    Article  Google Scholar 

  • Zuo, R., & Xu, Y. (2022). Graph deep learning model for mapping mineral prospectivity. Mathematical Geosciences. https://doi.org/10.1007/s11004-022-10015-z

    Article  Google Scholar 

  • Zuo, R., Luo, Z., Xiong, Y., & Yin, B. (2022). A geologically constrained variational autoencoder for mineral prospectivity mapping. Natural Resources Research, 31(3), 1121–1133.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the research on intelligent mineral prospectivity prediction of Au deposits in Fengtai ore cluster area, Shaanxi Province, China (2021KJXX-87), the study on 3D intelligent prediction of Au deposit resources in Pangjiahe, Fengxian County, Shaanxi Province, China (Grant No. 202103), the study on Au metallogenic regularity and prospecting direction in Fengtai ore cluster area, Shaanxi Province, China (Grant No. 201918), and the construction of geoscience big data in Shaanxi Province (No. 20180301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenkai Zhang or Jianhua Yang.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Zhang, Z., Yang, J. et al. Mineralized-Anomaly Identification Based on Convolutional Sparse Autoencoder Network and Isolated Forest. Nat Resour Res 32, 1–18 (2023). https://doi.org/10.1007/s11053-022-10143-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10143-7

Keywords

Navigation