Skip to main content

Advertisement

Log in

Mineral Prospectivity Mapping Using Deep Self-Attention Model

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Multi-source data integration for mineral prospectivity mapping (MPM) is an effective approach for reducing uncertainty and improving MPM accuracy. Multi-source data (e.g., geological, geophysical, geochemical, remote sensing, and drilling) should first be identified as evidence layers that represent ore-prospecting-related features. Traditional methods for MPM often neglect the correlations between different evidence layers that vary with their spatial locations, which results in the loss of useful information when integrating them into a mineral potential map. In this study, a deep self-attention model was adopted to integrate multiple evidence layers supported by a self-attention mechanism that can capture the internal relationships between various evidence layers and consider the spatial heterogeneity simultaneously. The attention matrix of the self-attention mechanism was further visualized to improve the interpretability of the proposed deep neural network model. A case study was conducted to demonstrate the advantages of the deep self-attention model for producing a potential map linked to gold mineralization in the Suizao district, Hubei Province, China. The results show that the delineated high potential area for gold mineralization has a close spatial association with known mineral deposits and ore-controlling geological factors, suggesting a robust predictive model with an accuracy of 0.88. The comparative experiments demonstrated the effectiveness of the self-attention mechanism and the optimum depth of the deep self-attention model. The targeted areas delineated in this study can guide gold mineral exploration in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Abedi, M., Norouzi, G. H., & Fathianpour, N. (2013). Fuzzy outranking approach: A knowledge-driven method for mineral prospectivity mapping. International Journal of Applied Earth Observation and Geoinformation, 21, 556–567.

    Article  Google Scholar 

  • Agterberg, F. P. (1989). Computer programs for mineral exploration. Science, 245(4913), 76–81.

    Article  Google Scholar 

  • Agterberg, F. P., & Bonham-Carter, G. F. (1999). Logistic regression and weights of evidence modeling in mineral exploration. In Proceedings of the 28th international symposium on applications of computer in the mineral industry (APCOM) (Vol. 483, p. 490), Golden, Colorado.

  • Aitchison, J. (1986). The statistical analysis of compositional data. Chapman & Hall.

    Book  Google Scholar 

  • An, P. (1991). Application of fuzzy set theory to integrated mineral exploration. Canadian Journal of Exploration Geophysics, 27, 1–11.

    Google Scholar 

  • Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. https://arxiv.org/pdf/1607.06450.pdf.

  • Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. https://arxiv.org/pdf/1409.0473v1.pdf.

  • Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., & Bengio, Y. (2016). End-to-end attention-based large vocabulary speech recognition. https://arxiv.org/pdf/1508.04395v2.pdf

  • Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798–1828.

    Article  Google Scholar 

  • Bonham-Carter, G. F., & Bonham-Carter, G. (1994). Geographic information systems for geoscientists: modelling with GIS (No. 13). Elsevier.

  • Brauwers, G., & Frasincar, F. (2021). A general survey on attention mechanisms in deep learning. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2021.3126456

    Article  Google Scholar 

  • Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: A new method for mineral prospectivity mapping. Australian journal of earth sciences, 47(4), 757–770.

    Article  Google Scholar 

  • Brown, W., Groves, D., & Gedeon, T. (2003). Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral-potential mapping. Natural Resources Research, 12(3), 183–200.

    Article  Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier.

    Google Scholar 

  • Carranza, E. J. M., Mangaoang, J. C., & Hale, M. (1999). Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines. Natural Resources Research, 8(2), 165–173.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22(1–2), 117–132.

    Article  Google Scholar 

  • Carranza, E. J. M., Hale, M., & Faassen, C. (2008). Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33, 536–558.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.

    Article  Google Scholar 

  • Chen, G., Huang, N., Wu, G., Luo, L., Wang, D., & Cheng, Q. (2022). Mineral prospectivity mapping based on wavelet neural network and Monte Carlo simulations in the Nanling W-Sn metallogenic Province. Ore Geology Reviews, 143, 104765.

    Article  Google Scholar 

  • Chen, Y. (2015). Mineral potential mapping with a restricted Boltzmann machine. Ore Geology Reviews, 71, 749–760.

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2017). Mapping mineral prospectivity using an extreme learning machine regression. Ore Geology Reviews, 80, 200–213.

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2019). Isolation forest as an alternative data-driven mineral prospectivity mapping method with a higher data-processing efficiency. Natural Resources Research, 28(1), 31–46.

    Article  Google Scholar 

  • Chen, Y., Wu, W., & Zhao, Q. (2020). A bat algorithm-based data-driven model for mineral prospectivity mapping. Natural Resources Research, 29(1), 247–265.

    Article  Google Scholar 

  • Chen, Y., Wu, W., & Zhao, Q. (2019). A bat-optimized one-class support vector machine for mineral prospectivity mapping. Minerals, 9(5), 317.

    Article  Google Scholar 

  • Cheng, Q., & Agterberg, F. P. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8(1), 27–35.

    Article  Google Scholar 

  • Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (mcc) over f1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1).

  • Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. (2015). Attention-based models for speech recognition. Advances in Neural Information Processing Systems, 28.

  • Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by exponential linear units (elus). https://arxiv.org/pdf/1511.07289v5.pdf.

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.

    Article  Google Scholar 

  • Daviran, M., Maghsoudi, A., Ghezelbash, R., & Pradhan, B. (2021). A new strategy for spatial predictive mapping of mineral prospectivity: Automated hyperparameter tuning of random forest approach. Computers & Geosciences, 148, 104688.

    Article  Google Scholar 

  • Debba, P., Carranza, E. J., Stein, A., & van der Meer, F. D. (2009). Deriving optimal exploration target zones on mineral prospectivity maps. Mathematical Geosciences, 41(4), 421–446.

    Article  Google Scholar 

  • Du, X., Zhou, K., Cui, Y., Wang, J., Zhang, N., & Sun, W. (2016). Application of fuzzy Analytical Hierarchy Process (AHP) and Prediction-Area (PA) plot for mineral prospectivity mapping: A case study from the Dananhu metallogenic belt, Xinjiang NW China. . Arabian Journal of Geosciences, 9(4), 1–15.

    Article  Google Scholar 

  • Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27(8), 861–874.

    Article  Google Scholar 

  • Galassi, A., Lippi, M., & Torroni, P. (2020). Attention in natural language processing. IEEE Transactions on Neural Networks and Learning Systems, 32(10), 4291–4308.

    Article  Google Scholar 

  • Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16–28.

    Article  Google Scholar 

  • Ghezelbash, R., Maghsoudi, A., Bigdeli, A., & Carranza, E. J. M. (2021). Regional-scale mineral prospectivity mapping: Support vector machines and an improved data-driven multi-criteria decision-making technique. Natural Resources Research, 30(3), 1977–2005.

    Article  Google Scholar 

  • Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. https://arxiv.org/pdf/1410.5401.pdf.

  • Guo, M., Xu, T., Liu, J., Liu, Z., Jiang, P., Mu, T., Zhang, S., Martin, R. R., Cheng, M., & Hu, S. (2022). Attention mechanisms in computer vision: A survey. Computational Visual Media, 1–38.

  • Harris, J. R., Wilkinson, L., Grunsky, E., Heather, K., & Ayer, J. (1999). Techniques for analysis and visualization of lithogeochemical data with applications to the Swayze greenstone belt Ontario. Journal of Geochemical Exploration, 67(1–3), 301–334.

    Article  Google Scholar 

  • Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2), 251–257.

    Article  Google Scholar 

  • Hosseini, S. A., & Abedi, M. (2015). Data envelopment analysis: A knowledge-driven method for mineral prospectivity mapping. Computers & Geosciences, 82, 111–119.

    Article  Google Scholar 

  • Hu, D. (2019). An introductory survey on attention mechanisms in NLP problems. https://arxiv.org/pdf/1811.05544.pdf

  • Hu, Q. (2001). Structure in northern Suizhou-Zaoyang and its ore-control implications. Hubei Geology & Mineral Resources, 15(4), 38–44. (In Chinese with English abstract).

    Google Scholar 

  • Kim, S., Hori, T., & Watanabe, S. (2017). Joint CTC-attention based end-to-end speech recognition using multi-task learning. https://arxiv.org/abs/1609.06773v2.pdf

  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. https://arxiv.org/pdf/1412.6980.pdf.

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  • Leng, S., Kuang, H., Tan, C., Tian, C., & Dong, Y. (2015). Discussion on characteristic contrast of gold deposit in periphery of Qijianfeng area of Suizhou-Zaoyang. Resources Environment & Engineering, 29(3), 275–279. (In Chinese with English abstract).

    Google Scholar 

  • Li, B., Liu, B., Guo, K., Li, C., & Wang, B. (2019). Application of a maximum entropy model for mineral prospectivity maps. Minerals, 9(9), 556.

    Article  Google Scholar 

  • Li, H., Li, X., Yuan, F., Jowitt, S. M., Zhang, M., Zhou, J., & Wu, B. (2020). Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian-Zhangbaling area, Anhui Province China. Applied Geochemistry, 122, 104747.

    Article  Google Scholar 

  • Li, R., Zheng, S., Duan, C., Su, J., & Zhang, C. (2021a). Multistage attention ResU-Net for semantic segmentation of fine-resolution remote sensing images. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.

    Google Scholar 

  • Li, T., Zuo, R., Xiong, Y., & Peng, Y. (2021b). Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping. Natural Resources Research, 30(1), 27–38.

    Article  Google Scholar 

  • Liu, L., Lu, J., Tao, C., Liao, S., & Chen, S. (2021). GIS-based mineral prospectivity mapping of seafloor massive sulfide on ultraslow-spreading ridges: A case study of Southwest Indian Ridge 48.7–50.5 E. Natural Resources Research, 30(2), 971–987.

  • Liu, X., & Di, X. (2022). Global context parallel attention for anchor-free instance segmentation in remote sensing images. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.

    Google Scholar 

  • Liu, Y., Zhou, K., Zhang, N., & Wang, J. (2018). Maximum entropy modeling for orogenic gold prospectivity mapping in the Tangbale-Hatu belt, western Junggar, China. Ore Geology Reviews, 100, 133–147.

    Article  Google Scholar 

  • Luo, X., Zhou, W., Wang, W., Zhu, Y., & Deng, J. (2017). Attention-based relation extraction with bidirectional gated recurrent unit and highway network in the analysis of geological data. IEEE Access, 6, 5705–5715.

    Article  Google Scholar 

  • Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. https://arxiv.org/pdf/1508.04025.pdf.

  • Ma, D., Li, S., Zhang, X., & Wang, H. (2017). Interactive attention networks for aspect-level sentiment classification. https://arxiv.org/pdf/1709.00893.pdf.

  • Mnih, V., Heess, N., & Graves, A. (2014). Recurrent models of visual attention. Advances in neural information processing systems, 27.

  • Moon, W. M. (1990). Integration of geophysical and geological data using evidential belief function. IEEE Transactions on Geoscience and Remote Sensing, 28(4), 711–720.

    Article  Google Scholar 

  • Moreira, F. R., Almeida-Filho, R., & Câmara, G. (2003). Spatial analysis techniques applied to mineral prospecting: An evaluation in the Poços de Caldas Plateau. Brazilian Journal of Geology, 33(2), 183–190.

    Google Scholar 

  • Niu, P., & Jiang, S. (2020). Petrogenesis of the Late Mesozoic Qijinfeng Granite Complex in the Tongbai orogen: Geochronological, geochemical and Sr-Nd-Pb-Hf isotope evidence. Lithos, 356, 105290.

    Article  Google Scholar 

  • Niu, P., Jiang, S., Hu, Q., Xu, T., & Xiong, S. (2020). Fluid inclusions and H-O–C–S isotope constraints on fluid evolution and ore genesis of the Wangjiadashan Cu–Au deposit in Suizao area of the Tongbai-Dabie orogenic belt, central China. Geological Journal, 55(2), 1563–1586.

    Article  Google Scholar 

  • Niu, P., Jiang, S., Xiong, S., Hu, Q., & Xu, T. (2019a). Fluid Inclusions and HOCS Isotopes of the Wushan Copper Polymetallic Deposit in the Suizao Area, Hubei Province: Implications for Ore Genesis. Geofluids, 3431909.

  • Niu, P., Jiang, S., Xiong, S., Hu, Q., & Xu, T. (2019b). Geological characteristics, fluid inclusions and HOCS isotopes of the Zaopa Ag-Mo prospect in the Suizao area, Hubei Province: Implications for ore genesis. Ore Geology Reviews, 111, 103012.

    Article  Google Scholar 

  • Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep learning. Neurocomputing, 452, 48–62.

    Article  Google Scholar 

  • Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—a magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, northern Finland. Ore Geology Reviews, 71, 853–860.

    Article  Google Scholar 

  • Parsa, M., & Maghsoudi, A. (2021). Assessing the effects of mineral systems-derived exploration targeting criteria for Random Forests-based predictive mapping of mineral prospectivity in Ahar-Arasbaran area Iran. Ore Geology Reviews, 138, 104399.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., & Yousefi, M. (2017). An improved data-driven fuzzy mineral prospectivity mapping procedure; cosine amplitude-based similarity approach to delineate exploration targets. International journal of applied earth observation and geoinformation, 58, 157–167.

    Article  Google Scholar 

  • Peng, S., Hu, J., Liu, J., Zhu, J., & Gong, Y. (2017). Rb-Sr isochron age of the Heilongtan Au-deposit in Suizhou, Hubei Province, and its geological significance. Geological Bulletin of China, 36(5), 867–874. (In Chinese with English abstract).

    Google Scholar 

  • Parsa, M., Carranza, E. J. M., & Ahmadi, B. (2022). Deep GMDH neural networks for predictive mapping of mineral prospectivity in terrains hosting few but large mineral deposits. Natural Resources Research, 31(1), 37–50.

    Article  Google Scholar 

  • Peng, W. (1993). A preliminary discussion on geological characteristics and genesis of gold deposits in Heilongtan-Wangjiawan district of Suizhou city, Hubei province. Journal of Precious Metallic Geology, 2(1), 19–25. (In Chinese with English abstract).

    Google Scholar 

  • Peng, W., Hu, Q., Huang, G., & Hu, Z. (2004). The metallogenetic condition and ore prospects of electrum in northern Suizhou and Zaoyang of Hubei. Resources Environment & Engineering, 18, 48–53 (supplement). (In Chinese with English abstract).

  • Porwal, A., Das, R. D., Chaudhary, B., Gonzalez-Alvarez, I., & Kreuzer, O. (2015). Fuzzy inference systems for prospectivity modeling of mineral systems and a case-study for prospectivity mapping of surficial Uranium in Yeelirrie Area, Western Australia. Ore Geology Reviews, 71, 839–852.

    Article  Google Scholar 

  • Powers, D.M.W. (2020). Evaluation: from precision, recall and F-factor to ROC, Informedness, markedness & correlation. https://arxiv.org/abs/2010.16061

  • Qiu, Q., Xie, Z., Wu, L., & Tao, L. (2019). GNER: A generative model for geological named entity recognition without labeled data using deep learning. Earth and Space science, 6(6), 931–946.

    Article  Google Scholar 

  • Qiu, Q., Xie, Z., Wu, L., & Tao, L. (2020). Dictionary-based automated information extraction from geological documents using a deep learning algorithm. Earth and Space Science, 7(3), e2019EA000993.

    Article  Google Scholar 

  • Qin, Y., Liu, L., & Wu, W. (2021). Machine learning-based 3D modeling of mineral prospectivity mapping in the Anqing Orefield Eastern China. Natural Resources Research, 30(5), 3099–3120.

    Article  Google Scholar 

  • Rensink, R. A. (2000). The dynamic representation of scenes. Visual Cognition, 7(1–3), 17–42.

    Article  Google Scholar 

  • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386.

    Article  Google Scholar 

  • Ruder, S. (2017). An overview of gradient descent optimization algorithms. https://arxiv.org/pdf/1609.04747.pdf.

  • Singer, D. A., & Kouda, R. (1996). Application of a feedforward neural network in the search for Kuroko deposits in the Hokuroku district Japan. Mathematical Geology, 28(8), 1017–1023.

    Article  Google Scholar 

  • Singer, D. A., & Kouda, R. (1999). A comparison of the weights-of-evidence method and probabilistic neural networks. Natural Resources Research, 8(4), 287–298.

    Article  Google Scholar 

  • Sordoni, A., Bachman, P., Trischler, A., & Bengio, Y. (2016). Iterative alternating neural attention for machine reading. https://arxiv.org/pdf/1606.02245.pdf.

  • Sun, T., Li, H., Wu, K., Chen, F., Zhu, Z., & Hu, Z. (2020). Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi Province China. Minerals, 10(2), 102.

    Article  Google Scholar 

  • Tharwat, A. (2020). Classification assessment methods. Applied Computing and Informatics, 17(1), 168–192.

    Article  Google Scholar 

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser. Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

  • Wang, C., Chen, J., & Ouyang, Y. (2022). Determination of predictive variables in mineral prospectivity mapping using supervised and unsupervised methods. Natural Resources Research, 1–22.

  • Wang, F., & Tax, D. M. (2016). Survey on the attention based RNN model and its applications in computer vision. https://arxiv.org/pdf/1601.06823.pdf.

  • Wang, J., Zuo, R., & Xiong, Y. (2020a). Mapping mineral prospectivity via semi-supervised random forest. Natural Resources Research, 29(1), 189–202.

    Article  Google Scholar 

  • Wang, Z., & Zuo, R. (2022). Mineral prospectivity mapping using a joint singularity-based weighting method and long short-term memory network. Computers & Geosciences, 158, 104974.

    Article  Google Scholar 

  • Wang, Z., Yin, Z., Caers, J., & Zuo, R. (2020b). A Monte Carlo-based framework for risk-return analysis in mineral prospectivity mapping. Geoscience Frontiers, 11(6), 2297–2308.

    Article  Google Scholar 

  • Wu, K., Chen, J., Xu, Z., & Dan, J. (2020). Analysis of metallogenic geological conditions and metallogenic models of gold polymetallic deposits in Suizao area. Resources Environment & Engineering, 34(3), 339–346. (In Chinese with English abstract).

    Google Scholar 

  • Xiang, X., Xiao, B., & Zhang, Z. (2021). Geological characteristics, genesis and prospecting potential of gold deposit (point) in southern slope of Tongbai mountain. Resources Environment & Engineering, 35(6), 794–801. (In Chinese with English abstract).

    Google Scholar 

  • Xiao, B., Ning, H., Feng, J., Zhang, Q., & Qu, J. (2018). Resources Environment & Engineering, 32(2), 195–199. (In Chinese with English abstract).

    Google Scholar 

  • Xiao, F., Chen, W., Wang, J., & Erten, O. (2021). A hybrid logistic regression: gene expression programming model and its application to mineral prospectivity mapping. Natural Resources Research, 1–24.

  • Xie, X., Mu, X., & Ren, T. (1997). Geochemical mapping in China. Journal of Geochemical Exploration, 60, 99–113.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2018). GIS-based rare events logistic regression for mineral prospectivity mapping. Computers & Geosciences, 111, 18–25.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2017). Effects of misclassification costs on mapping mineral prospectivity. Ore Geology Reviews, 82, 1–9.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2021). A positive and unlabeled learning algorithm for mineral prospectivity mapping. Computers & Geosciences, 147, 104667.

    Article  Google Scholar 

  • Xiong, Y., Zuo, R., & Carranza, E. J. M. (2018). Mapping mineral prospectivity through big data analytics and a deep learning algorithm. Ore Geology Reviews, 102, 811–817.

    Article  Google Scholar 

  • Xu, Y., Li, Z., Xie, Z., Cai, H., Niu, P., & Liu, H. (2021). Mineral prospectivity mapping by deep learning method in Yawan-Daqiao area Gansu. Ore Geology Reviews, 138, 104316.

    Article  Google Scholar 

  • Yang, Y., Li, H., Hu, W., Pan, L., & L., & Du, Q. (2022). Adaptive cross-attention-driven spatial–spectral graph convolutional network for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.

    Article  Google Scholar 

  • Yin, B., Zuo, R., & Xiong, Y. (2022). Mineral prospectivity mapping via gated recurrent unit model. Natural Resources Research, 31(4), 2065–2079.

    Article  Google Scholar 

  • Yin, J., & Li, N. (2022). Ensemble learning models with a Bayesian optimization algorithm for mineral prospectivity mapping. Ore Geology Reviews, 145, 104916.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015b). Geometric average of spatial evidence data layers: A GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers & Geosciences, 83, 72–79.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25(1), 3–18.

    Article  Google Scholar 

  • Zhang, Q., Chen, J., Xu, H., Jia, Y., Chen, X., Jia, Z., & Liu, H. (2022). Three-dimensional mineral prospectivity mapping by xgboost modeling: a case study of the Lannigou gold deposit, China. Natural Resources Research, 1–22.

  • Zhang, S., Carranza, E. J. M., Wei, H., Xiao, K., Yang, F., Xiang, J., Zhang, S., & Xu, Y. (2021a). Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network. Natural Resources Research, 30(2), 1011–1031.

    Article  Google Scholar 

  • Zhang, Z. (2021). Research on attention mechanism for neural networks, doctoral dissertation, University of Science and Technology of China. (In Chinese with English abstract).

  • Zhang, X., Wang, X., Tang, X., Zhou, H., & Li, C. (2019). Description generation for remote sensing images using attribute attention mechanism. Remote Sensing, 11(6), 612.

    Article  Google Scholar 

  • Zhang, Z., Xiang, X., Wu, F., Zhu, X., Sun, H., & Yang, J. (2021b). Stable isotope characteristics and geological significance of Heilongtan gold deposit in Suixian county, Hubei province. Resources Environment & Engineering, 35(1), 30–56. (In Chinese with English abstract).

    Google Scholar 

  • Zhu, J., Zhou, B., Qin, Z., Liu, W., Wang, G., Zhang, W., & Xu, D. (2021). Rb-Sr isotopic dating and genesis of Wangjiatai gold polymetallic ore in Suixian county Hubei province. Resources Environment & Engineering, 35(3), 308–312. (In Chinese with English abstract).

    Google Scholar 

  • Zuo, R. (2016). A nonlinear controlling function of geological features on magmatic–hydrothermal mineralization. Scientific Reports, 6(1), 1–5.

    Article  Google Scholar 

  • Zuo, R. (2020). Geodata science-based mineral prospectivity mapping: A review. Natural Resources Research, 29(6), 3415–3424.

    Article  Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences, 37(12), 1967–1975.

    Article  Google Scholar 

  • Zuo, R., Kreuzer, O. P., Wang, J., Xiong, Y., Zhang, Z., & Wang, Z. (2021). Uncertainties in GIS-based mineral prospectivity mapping: Key types, potential impacts and possible solutions. Natural Resources Research, 30(5), 3059–3079.

    Article  Google Scholar 

  • Zuo, R., & Wang, Z. (2020). Effects of random negative training samples on mineral prospectivity mapping. Natural Resources Research, 29(6), 3443–3455.

    Article  Google Scholar 

  • Zuo, R., Luo, Z., Xiong, Y., & Yin, B. (2022). A geologically constrained variational autoencoder for mineral prospectivity mapping. Natural Resources Research, 31(3), 1121–1133.

    Article  Google Scholar 

  • Zuo, R., & Xu, Y. (2022). Graph deep learning model for mapping mineral prospectivity. Mathematical Geosciences. https://doi.org/10.1007/s11004-022-10015-z

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to an anonymous reviewer for his valuable comments which improved this study. This study was supported by the National Natural Science Foundation of China (41972303 and 42172326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renguang Zuo.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, B., Zuo, R. & Sun, S. Mineral Prospectivity Mapping Using Deep Self-Attention Model. Nat Resour Res 32, 37–56 (2023). https://doi.org/10.1007/s11053-022-10142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10142-8

Keywords

Navigation