Skip to main content
Log in

Coupled Thermo–Mechanical Damage Evolution of Granite under Repeated Heating–Cooling Cycles and the Applications of Mohr–Coulomb and Drucker–Prager Models

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Geothermal energy and nuclear waste storage are closely related to typical crystalline rock, granite. Therefore, understanding the thermo–mechanical properties of granite under heating–cooling treatment is critical to deep geological repository and risk assessment. This study presents experimental results with several granite groups under repeated and single heating–cooling cycles up to 1000 °C to study the thermo–mechanical properties of the granite. Young’s modulus and P-wave velocity were used to determine the thermal damage. According to the Weibull statistical distribution function, the resultant thermal damage models were correlated with mechanical damage regarding the Drucker–Prager (DP) and Mohr–Coulomb (MC) failure criteria. Compared with single heating–cooling cycles, the thermo–mechanical properties, peak strain, peak stress, friction angle, cohesion strength, Young’s modulus, bulk density, and P-wave velocity present small changes because of the Kaiser effect (thermal memory). The study shows that the proposed coupled thermo–mechanical damage provides a more accurate description of temperature-induced variations than the conventional thermal and mechanical damage methods. The resulting mechanical damage is more extensive than the thermal damage at low temperatures which, however, dominates beyond the critical temperature of 400 °C. The coupled thermo–mechanical damage simulated by the P-wave velocity as a power trend with temperature becomes more accurate than Young’s modulus as an exponential trend with temperature. The coupled thermal-mechanical calculated by MC failure criterion is much better than the DP failure criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  • Aydan, Ӧ., Tokashiki, N., Genis, M, (2012). Some considerations on yield (failure) criterion in rock mechanics. In: 46th US Rock Mechanics/Geomechanics Symposium. Chicago: American Rock Mechanics Association.

  • Belem, T., Souley, M., & Homand, F. (2007). Modeling surface roughness degradation of rock joint wall during monotonic and cyclic shearing. Acta Geotechnica, 2, 227–248.

    Article  Google Scholar 

  • Benham, P. P., Hoyle, R., & Ford, H. (1964). THERMAL STRESS. London: Sir Isaac Pitman & Sons Ltd.

    Google Scholar 

  • Browning, J., Meredith, P., & Gudmundsson, A. (2016). Cooling-dominated cracking in thermally stressed volcanic rocks. Geophysical Research Letters, 43(16), 8417–8425.

    Article  Google Scholar 

  • Burton, E., Friedmann, J., Upadhye, R., (2006). Best practices in underground coal gasification. US Department of Energy Research report. Lawrence Livermore National Laboratory: CA.

  • Chen, G. X., & Zhang, Y. M. (1989). Crystal powder diffraction analysis handbook of mineral thermal analysis. Chengdu: Sichuan Science and Technology Press.

    Google Scholar 

  • Chen, L., Liu, J. F., Wang, C. P., Liu, J., Su, R., & Wang, J. (2014). Characterization of damage evolution in granite under compressive stress condition and its effect on permeability. International Journal of Rock Mechanics and Mining Sciences, 71, 340–349.

    Article  Google Scholar 

  • Chen, Y. L., Wang, S. R., Ni, J., Azzam, R., & Ferández-steeger, T. M. (2017). An experimental study of the mechanical properties of granite after high-temperature exposure based on mineral characteristics. Engineering Geology, 220, 234–242.

    Article  Google Scholar 

  • David, C., Menendez, B., & Darot, M. (1999). Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite. International Journal of Rock Mechanics and Mining Sciences, 36(4), 433–448.

    Article  Google Scholar 

  • DIN EN. (2007). Natural stone test method—determination of real density and apparent density, and of total and open porosity. Deutsches Institut für Normung [DIN], Berlin, German.

  • Dougill, J. W., Lau, J. C., & Burt, N. J. (1977). Toward a Theoretical Model for Progressive Failure and Softening in Rock, Concrete and Similar Material. Waterloo: University of Waterloo Press.

    Google Scholar 

  • Drucker, D. C., & Prager, W. (1952). Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics, 10(2), 157–165.

    Article  Google Scholar 

  • Fukuhara, M., & Sampei, A. (1999). Effects on high-temperature-elastic properties on α-/β quartz phase transition of fused quartz. Journal of Materials Science Letters, 18(10), 751–753.

    Article  Google Scholar 

  • Gao, J., Fan, L., & Wan, Z. (2021). Thermal cycling effects on the dynamic behavior of granite and microstructural observations. Bulletin of Engineering Geology and the Environment, 80, 8711–8723.

    Article  Google Scholar 

  • Gautam, P. K., Dwivedi, R., Kumar, A., Kumar, A., Verma, A. K., Singh, K. H., & Singh, T. N. (2021). Damage characteristics of Jalore granitic rocks after thermal cycling effect for nuclear waste repository. Rock Mechanics & Rock Engineering, 54, 235–254.

    Article  Google Scholar 

  • Gibb, F. (1999). High-temperature, very deep, geological disposal: a safer alternative for high-level radioactive waste? Waste Management, 19(3), 207–211.

    Article  Google Scholar 

  • Goodman, R. E. (1963). Subaudible noise during compression of rocks. Geological Society of America Bulletin, 74, 487–490.

    Article  Google Scholar 

  • Hajpál, M., & Tӧrӧk, Á. (2004). Mineralogical and colour changes of quartz sandstones by heat. Environmental Earth Sciences, 46(3–4), 311–322.

    Google Scholar 

  • Hashiba, K., Fukui, K., & Kataoka, M. (2019). Effects of water saturation on the strength and loading-rate dependence of andesite. International Journal of Rock Mechanics and Mining Sciences, 117, 142–149.

    Article  Google Scholar 

  • Hashiba, K., Fukui, K., Kataoka, M., & Chu, S. Y. (2018). Effect of water on the strength and creep lifetime of andesite. International Journal of Rock Mechanics and Mining Sciences, 108, 37–42.

    Article  Google Scholar 

  • Hoek, E., & Brown, E. T. (1980). Empirical strength criterion for rock masses. Journal of the Geotechnical Engineering Division, 106(GT9), 1013–1035.

    Article  Google Scholar 

  • Jiang, J., & Yang, G. (2010). Field tests on mechanical characteristics and strength parameters of red-sandstone. Journal of Central South University of Technology, 17(2), 381–387.

    Article  Google Scholar 

  • Johnson, B., Gangi, A. F., Handin, J. (1978). Thermal cracking of rock subjected to slow, uniform temperature changes. In: Procedings 19th US Symposium on Rock Mechanics, 19, 259–267.

  • Jones, C., Keaney, G., Meredith, P. G., & Murrell, S. A. F. (1997). Acoustic emission and fluid permeability measurements on thermally cracked rocks. Physics and Chemistry of The Earth, 22, 13–17.

    Article  Google Scholar 

  • Kaiser, E. J. (1950). A study of acoustic phenomena in tensile test. Doctoral Thesis: Thchnische Hochschule München.

  • Kang, F., Li, Y., & Tang, C. (2021). Grain size heterogeneity controls strengthening to weakening of granite over high-temperature treatment. International Journal of Rock Mechanics and Mining Sciences, 145, 104848.

    Article  Google Scholar 

  • Kim, K., Kemeny, J., & Nickerson, M. (2014). Effect of rapid thermal cooling on mechanical rock properties. Rock Mechanics & Rock Engineering, 47, 2005–2019.

    Article  Google Scholar 

  • Kumari, W. G. P., Ranjith, P. G., Perera, M. S. A., Chen, B. K., & Abdulagatov, I. M. A. (2017). Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Engineering Geology, 229, 31–44.

    Article  Google Scholar 

  • Lemaitre, J. (1992). A Course on Damage Mechanics. Berlin: Springer.

    Book  Google Scholar 

  • Li, B., Ju, F., Xiao, M., & Ning, P. (2019). Mechanical stability of granite as thermal energy storage material: An experimental investigation. Engineering Fracture Mechanics, 211, 61–69.

    Article  Google Scholar 

  • Ma, L. J., Liu, X. Y., Fang, Q., Xu, H., Xia, H., Li, E., Yang, S., & Li, W. (2013). A new elasto-viscoplastic damage model combined with the generalized Hoek-Brown failure criterion for bedded rock salt and its application. Rock Mechanics & Rock Engineering, 46, 53–66.

    Article  Google Scholar 

  • Ma, X., Wang, G., Hu, D., Liu, Y., & Liu, F. (2020). Mechanical properties of granite under real-time high temperature and three-dimensional stress. International Journal of Rock Mechanics and Mining Sciences, 136(1), 104521.

    Article  Google Scholar 

  • Mahabadi, O. K., Tatone, B. S. A. A., & Grasselli, G. (2014). Influence of microscale heterogeneity and microstructure on the tensile behavior of crystalline rocks. Journal of Geophysical Research Solid Earth, 119(7), 5324–5341.

    Article  Google Scholar 

  • Miao, S., Pan, P., Zhao, X., Shao, C., & Yu, P. (2020). Experimental study on damage and fracture characteristics of Beishan granite subjected to high-temperature treatment with DIC and AE techniques. Rock Mechanics & Rock Engineering, 54(2), 721–743.

    Article  Google Scholar 

  • Ohno, I., Harada, K., & Yoshitomi, C. (2006). Temperature variation of elastic constants of quartz across the alpha-beta transition. Physics and Chemistry of Minerals, 33(1), 1–9.

    Article  Google Scholar 

  • Olasolo, P., Juarez, M. C., Olasolo, J., Morales, M. P., & Valdani, D. (2016). Economic analysis of Enhanced Geothermal Systems (EGS): a review of software packages for estimating and simulating costs. Applied Thermal Engineering, 104, 647–658.

    Article  Google Scholar 

  • Qin, F. G. F., Yang, X., Zhan, D., Zuo, Y., Shao, Y., Jiang, R., & Yang, X. (2012). Thermocline stability criterions in single-tanks of molten salt thermal energy storage. Applied Energy, 97, 816–821.

    Article  Google Scholar 

  • Rong, G., Peng, J., Cai, M., Yao, M., Zhou, C., & Sha, S. (2018). Experimental investigation of thermal cycling effect on physical and mechanical properties of bedrocks in geothermal fields. Applied Thermal Engineering, 141, 174–185.

    Article  Google Scholar 

  • Rossi, E., Kant, M. A., Madonna, C., Saar, M. O., & Rudolf, R. R. (2018). The effects of high heating rate and high temperature on the rock strength: feasibility study of a thermally assisted drilling method. Rock Mechanics & Rock Engineering, 51, 2957–2964.

    Article  Google Scholar 

  • Sajjad, M., & Rasul, M. G. (2015). Prospect of underground coal gasification in Bangladesh. Procedia Engineering, 105, 537–548.

    Article  Google Scholar 

  • Shao, S., Ranjith, P. G., Wasantha, P., & Chen, B. K. (2015). Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: an application to geothermal energy. Geothermics, 54, 96–108.

    Article  Google Scholar 

  • Somerton, W. H. (1992). Thermal properties and temperature related behaviour of rock/fluid systems. Amsterdam: Elsevier.

    Google Scholar 

  • Sousa, L. M. O., Suárez del Río, L. M., Calleja, L., Ruiz de Argandoña, V. G., & Rodríguez Rey, A. (2005). Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Engineering Geology, 77, 153–168.

    Article  Google Scholar 

  • Sun, Q., Zhang, W. Q., Xue, L., Zhang, Z. Z., & Su, T. M. (2015). Thermal damage pattern and thresholds of granite. Environmental Earth Sciences, 74, 2341–2349.

    Article  Google Scholar 

  • Tang, C. A., & Xu, X. H. (1990). Evolution and propagation of material defects and Kaiser effect function. Journal of Seismological Research, 13, 203–213.

    Google Scholar 

  • Tang, C. A., Chen, Z. H., Xu, X. H., & Li, C. (1997). A theoretical model for kaiser effect in rock. Pure and Applied Geophysics, 150(2), 203–215.

    Article  Google Scholar 

  • Tang, Z. C. (2020). Experimental investigation on temperature-dependent shear behaviors of granite discontinuity. Rock Mechanics & Rock Engineering, 53(4), 4043–4060.

    Article  Google Scholar 

  • Tang, M., Wang, Z., Sun, Y., & Ba, J. (2010). Experimental study of mechanical properties of granite under low temperature. Chinese Journal of Rock Mechanics and Engineering, 29(4), 787–794.

    Google Scholar 

  • Tang, Z. C., Zhang, Q. Z., & Peng, J. (2020). Effect of thermal treatment on the basic friction angle of rock joint. Rock Mechanics & Rock Engineering, 53(4), 1973–1990.

    Article  Google Scholar 

  • Tian, H., Zhu, Z., Ranjith, P. G., Jiang, G., & Dou, B. (2021). Experimental investigation of drillability indices of thermal granite after water-cooling treatment. Natural Resources Research, 30(6), 4621–4640.

    Article  Google Scholar 

  • Villarraga, C. J., Gasc-Barbier, M., Vaunat, J., & Darrozes, J. (2018). The effect of thermal cycles on limestone mechanical degradation. International Journal of Rock Mechanics and Mining Sciences, 109, 115–123.

    Article  Google Scholar 

  • Wang, H. F., Bonner, B. P., Carlson, S. R., Kowallis, B. J., & Heard, H. C. (1989). Thermal stress cracking in granite. Journal of Geophysical Research, 94(B2), 1745–1758.

    Article  Google Scholar 

  • Wang, F., Frühwirt, T., & Konietzky, H. (2020). Influence of repeated heating on physical-mechanical properties and damage evolution of granite. International Journal of Rock Mechanics and Mining Sciences, 136, 104514.

    Article  Google Scholar 

  • Wang, F., & Konietzky, H. (2019). Thermo-mechanical properties of granite at elevated temperatures and numerical simulation of thermal cracking. Rock Mechanics & Rock Engineering, 52, 3737–3755.

    Article  Google Scholar 

  • Wang, F., & Konietzky, H. (2022). Thermal cracking in granite during a heating-cooling cycle up to 1000°C: laboratory testing and real-time simulation. Rock Mechanics & Rock Engineering, 55(3), 1411–1428.

    Article  Google Scholar 

  • Wang, Z., Tian, N., Wang, J., Liu, J., & Hong, L. (2018). Experimental study on damage mechanical characteristics of heat-treated granite under repeated impact. Journal of Materials in Civil Engineering, 30(11), 04018274.

    Article  Google Scholar 

  • Wang, Z. L., Li, Y. C., & Wang, J. G. (2007). A damage-softening statistical constitutive model considering rock residual strength. Computers & Geosciences, 33(1), 1–9.

    Article  Google Scholar 

  • Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, 18, 293–297.

    Article  Google Scholar 

  • Weng, L., Wu, Z., & Liu, Q. (2019). Influence of heating/cooling cycles on the micro/macrocracking characteristics of Rucheng granite under unconfined compression. Bulletin of Engineering Geology and the Environment, 79(3), 1289–1309.

    Article  Google Scholar 

  • Xu, X. L., & Karakus, M. (2018). A coupled thermo-mechanical damage model for granite. International Journal of Rock Mechanics and Mining Sciences, 103, 195–204.

    Article  Google Scholar 

  • Yang, J., Fu, L. Y., Zhang, W., & Wang, Z. (2019). Mechanical property and thermal damage factor of limestone at high temperature. International Journal of Rock Mechanics and Mining Sciences, 117, 11–19.

    Article  Google Scholar 

  • Yang, S. Q., Xu, P., Li, Y. B., & Huang, Y. H. (2017). Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments. Geothermics., 69, 93–109.

    Article  Google Scholar 

  • Zhang, F., Zhao, J., Hu, D., Skoczylas, F., & Shao, J. (2018). Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mechanics & Rock Engineering, 51(1), 677–694.

    Article  Google Scholar 

  • Zhang, W. Q., Sun, Q., Hao, S. Q., & Wang, B. (2016). Experimental study on the thermal damage characteristics of limestone and underlying mechanism. Rock Mechanics & Rock Engineering, 49(8), 2999–3008.

    Article  Google Scholar 

  • Zhang, Y. L., Sun, Q., Cao, L. W., & Geng, J. S. (2017). Pore, mechanics and acoustic emission characteristics of limestone under the influence of temperature. Applied Thermal Engineering, 123, 1237–1244.

    Article  Google Scholar 

  • Zhao, H. B., Yin, G. Z., & Chen, L. J. (2009). Experimental study on effect of temperature on sandstone damage. Chinese Journal of Rock Mechanics and Engineering, 28(s1), 2784–2788.

    Google Scholar 

  • Zhao, Z. (2015). Thermal influence on mechanical properties of granite: a microcracking perspective. Rock Mechanics & Rock Engineering, 49, 747–762.

    Article  Google Scholar 

  • Zhu, Z., Tian, H., Kempka, T., Jiang, G., Dou, B., & Mei, G. (2021). Mechanical behaviors of granite after thermal treatment under loading and unloading conditions. Natural Resources Research, 30(3), 2733–2752.

    Article  Google Scholar 

  • Zhu, Z., Tian, H., Mei, G., Jiang, G., & Xiao, P. (2021). Experimental investigation on mechanical behaviors of Nanan granite after thermal treatment under conventional triaxial compression. Environmental Earth Sciences, 80, 46.

    Article  Google Scholar 

  • Zuberek, W. M., Zogala, B., Dubiel, R., & Pierwola, J. (2002). Maximum temperature memory in sandstone and mudstone observed with acoustic emission and ultrasonic measurements. International Journal of Rock Mechanics and Mining Sciences, 35(4–5), 416–417.

    Google Scholar 

Download references

Acknowledgment

We thank the editor, John Carranza, and five anonymous reviewers for their constructive comments. The research was supported by the National Natural Science Foundation of China (Grant No. 41821002) and the 111 Project “Deep-Superdeep Oil & Gas Geophysical Exploration” (Grant No. B18055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yun Fu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Fu, LY., Wang, F. et al. Coupled Thermo–Mechanical Damage Evolution of Granite under Repeated Heating–Cooling Cycles and the Applications of Mohr–Coulomb and Drucker–Prager Models. Nat Resour Res 31, 2629–2652 (2022). https://doi.org/10.1007/s11053-022-10084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10084-1

Keywords

Navigation