Skip to main content

Petrophysical Characterization of the Turonian and Cenomanian Intervals in the Abu Gharadig Field, Western Desert, Egypt: Inferences on Reservoir Quality and Resource Development

Abstract

Characterization of reservoir petrophysical properties provides critical insights into reservoir deliverability and field development strategy. The main objective of this work is to present a comprehensive core-based petrophysical assessment of the Cenomanian Bahariya Formation and the Turonian Abu Roash (AR-D and AR-E, respectively) Members of the Abu Gharadig field situated in the Western Desert, Egypt. The AR-D is water-wet and consists of micro- to mesoporous shallow marine limestone lithofacies with moderate porosity (Φ), poor horizontal permeability (Kh) with poor permeability anisotropy due to the presence of vertical fractures, while the nano- to mesoporous argillaceous limestone lithofacies is very tight. Both the lithofacies exhibit primary and secondary depositional fabrics. Overall, the AR-D member exhibits impervious to poor reservoir quality, and so a suitable stimulation strategy will be essential to produce from this interval. The AR-E interval implies a tidal depositional environment. The calcareous sandstone lithofacies of the AR-E is macro- to megaporous and exhibits moderate to high porosity (> 15%) and excellent permeability (up to 305 mD). The meso- to microporous glauconitic siltstones of the AR-E have poor porosity and permeability. Both lithofacies are characterized by high water saturation, preserve primary depositional fabrics and consist of isotropic pore system along with some connected horizontal pores yielding higher permeability anisotropy. The Bahariya Formation consists of fine to medium grained massive sandstone lithofacies with minor siltstone intercalations, indicating a channel deposit in a coastal or fluvio–deltaic environment. It exhibits high porosity (~ 20%) and permeability (up to 649 mD) but shows very high water saturation. It preserves the primary depositional fabrics with isotropic pore system. The thin siltstone intercalations may act as vertical barriers. Based on the petrophysical assessment, we made recommendations on the reservoir development aspects.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available due restricted permissions but are available from the corresponding author on reasonable request.

Notes

  1. 1 mD (millidarcy) = 9.86923* 10–16 meter2.

  2. 1 ft = 0.3048 m.

  3. 1 psi/ft = 22.6206 Megapascal/kilometer.

  4. 1 PPG (pounds per gallon) = 0.12 gm/cm3.

  5. 1 psi = 0.0069 Megapascal.

  6. 1 mD (millidarcy) = 9.86923* 10–16 meter2.

  7. 1 psi = 0.0069 Megapascal.

  8. 1 bopd = 0.1589 cubic meter per day.

  9. 1 MMSCFD (million standard cubic ft/day) = 0.02832 MMSCMD (million standard cubic meter/day.

  10. 1 bopd = 0.1589 cubic meter per day.

  11. 1 MMSCFD (million standard cubic ft/day) = 0.02832 MMSCMD (million standard cubic meter/day.

References

  • Abdel-Fattah, M. I., Sen, S., Abuzied, S. M., Abioui, M., Radwan, A. E., & Benssaou, M. (2022). Facies analysis and petrophysical investigation of the Late Miocene Abu Madi sandstone gas reservoirs from offshore Baltim East field (Nile Delta, Egypt). Marine and Petroleum Geology, 137, 105501.

    Article  Google Scholar 

  • Abdel-Kireem, M. R., Schrank, E., Samir, A. M., & Ibrahim, M. I. A. (1996). Cretaceous palaeoecology, palaeogeography and palaeoclimatology of the northern Western Desert Egypt. Journal of African Earth Sciences, 22, 93–112.

    Article  Google Scholar 

  • Abdelmaksoud, A., Amin, A. T., El-Habaak, G. H., & Ewida, H. F. (2019a). Facies and petrophysical modeling of the Upper Bahariya Member in Abu Gharadig oil and gas field, north Western Desert Egypt. Journal of African Earth Sciences, 149, 503–516.

    Article  Google Scholar 

  • Abdelmaksoud, A., Ewida, H. F., El-Habaak, G. H., & Amin, A. T. (2019b). 3D structural modeling of the Upper Bahariya Member in Abu Gharadig oil and gas field, North Western Desert Egypt. Journal of African Earth Sciences, 150, 685–700.

    Article  Google Scholar 

  • Abuamarah, B. A., & Nabawy, B. S. (2021). A proposed classification for the reservoir quality assessment of hydrocarbon-bearing sandstone and carbonate reservoirs: A correlative study based on different assessment petrophysical procedures. Journal of Natural Gas Science and Engineering, 88, 103807.

    Article  Google Scholar 

  • Abuamarah, B. A., Nabawy, B. S., Shehata, A. M., Kassem, O. M. K., & Ghrefat, H. (2019). Integrated geological and petrophysical characterization of Oligocene deep marine unconventional poor to tight sandstone gas reservoir. Marine and Petroleum Geology, 109, 868–885.

    Article  Google Scholar 

  • Abuseda, H., Fathy, M., & Elnaggar, O. M. (2021). Impact of sedimentologic diagenesis on the petrophysical evaluation of the reservoir rocks in BED-1 field, Western Desert Egypt. Asian Journal of Geological Research, 4(2), 45–53.

    Google Scholar 

  • Adly, O., El Araby, A. M., El Barkooky, A., Abu Roash F. (2016). Member as a potential self-sourced reservoir in Abu Gharadig Basin, Western Desert of Egypt. In: AAPG Hedberg Conference, The Future of Basin and Petroleum Systems Modeling, Santa Barbara, California, April 3–8. Search and Discovery Article #90257

  • Al-Hajeri, S. K., Ayoub, M. R., Al Shehhi, A. S., Negahban, S., Riberio, M. T., Bahamaish, J. N., (2007). Tight reservoirs – A development challenge example from a carbonate reservoir offshore Abu Dhabi. In: SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, March 11–14.SPE-105420-MS.

  • Alsharhan, A., & Sadd, J. L. (2000). Stylolites in Lower Cretaceous carbonate reservoirs UAE. In A. S. Alsharhan & R. W. Scott (Eds.), Middle east models of jurassic/cretaceous carbonate system (pp. 185–207). Tulsa: Society for Sedimentary Geology Special Publication.

    Chapter  Google Scholar 

  • Alyan, M., Martin, J., Irwin, D., (2015). Field development plan optimization for tight carbonate reservoirs. In: SPE Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, Nov 9–12. SPE-177695-MS.

  • Amaefule, J., Altunbay, M., Tiab, D., Kersey, D., Keelan, D., (1993). Enhanced reservoir description, using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. SPE Annual Technical Conference and Exhibition, Houston, Texas. SPE 26436.

  • Apex International Energy, (2021). Press release, 18 Jan, Cairo, Egypt. https://apexintl.com/blue-water-energy-llp-to-partner-with-apex-international-energy-2/

  • Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Journal of Petroleum Technology, 5, 54–62.

    Google Scholar 

  • Baioumy, H., & Boulis, S. (2012). Glauconites from the Bahariya Oasis: An evidence for Cenomanian marine transgression in Egypt. Journal of African Earth Sciences, 70, 1–7.

    Article  Google Scholar 

  • Banerjee, S., Mondal, S., Chakraborty, P. P., & Meena, S. S. (2015). Distinctive compositional characteristics and evolutionary trend of Precambrian glaucony: Example from Bhalukona Formation, Chhattisgarh basin, India. Precambrian Research, 271, 33–48.

    Article  Google Scholar 

  • Banerjee, S., Bansal, U., & Thorat, A. V. (2016a). A review on palaeogeographic implications and temporal variation in glaucony composition. Journal of Paleogeography, 5, 43–71.

    Article  Google Scholar 

  • Banerjee, S., Bansal, U., Pande, K., & Meena, S. S. (2016). Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: Implications for evaluation of stratigraphic condensation. Sedimentary Geology, 331, 12–29.

    Article  Google Scholar 

  • Banerjee, S., Farouk, S., Nagm, E., Choudhury, T. R., & Meena, S. S. (2019). High Mg-glauconite in the Campanian Duwi Formation of Abu Tartur Plateau, Egypt and its implications. Journal of African Earth Sciences, 156, 12–25.

    Article  Google Scholar 

  • Bansal, U., Banerjee, S., Ruidas, D. K., & Pande, K. (2018). Origin and geochemical characterization of the glauconites in the upper cretaceous Lameta formation, Narmada basin, central India. Journal of Paleogeography, 7, 99–116.

    Article  Google Scholar 

  • Bansal, U., Banerjee, S., Pande, K., & Ruidas, D. K. (2019). Unusual seawater composition of the Late Cretaceous Tethys imprinted in glauconite of Narmada basin Central India. Geological Magazine, 157, 233–247.

    Article  Google Scholar 

  • Baouche, R., Sen, S., Debiane, K., & Ganguli, S. S. (2020). Integrated reservoir characterization of the Paleozoic and Mesozoic sandstones of the El Ouar field, Algeria. Journal of Petroleum Science and Engineering, 194, 107551.

    Article  Google Scholar 

  • Baouche, R., Sen, S., Ganguli, S. S., & Feriel, H. A. (2021a). Petrophysical, geomechanical and depositional environment characterization of the Triassic TAGI reservoir from the Hassi Berkine South field, Berkine Basi, Southeastern Algeria. Journal of Natural Gas Science and Engineering, 92, 104002.

    Article  Google Scholar 

  • Baouche, R., Sen, S., Ganguli, S. S., & Boutaleb, K. (2021). Petrophysical and geomechanical characterization of the Late Cretaceous limestone reservoirs from the Southeastern Constantine Basin Algeria. Interpretation, 9(4), SH1–SH9.

    Article  Google Scholar 

  • Barbier, M., Hamon, Y., Callot, J.-P., Floquet, M., & Daniel, J.-M. (2012). Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: The Madison Formation (Sheep Mountain, Wyoming, USA). Marine and Petroleum Geology, 29(1), 50–67.

    Article  Google Scholar 

  • Baud, P., Meredith, P. G., & Townend, E. (2012). Permeability evolution during triaxial compaction of an anisotropic porous sandstone. Journal of Geophysical Research, 117, B05203. https://doi.org/10.1029/2012JB009176

    Article  Google Scholar 

  • Bosworth, W., El-Hawat, A. S., Helgeson, D. E., & Burke, K. (2008). Cyrenaican “shock absorber” and associated inversion strain shadow in the collision zone of Northeast Africa. Geology, 36(9), 695–698.

    Article  Google Scholar 

  • Boukhary, M., El Nahas, S., El Naby, A. A., Aal, M. H. A., Mahsoub, M., & Faris, M. (2014). Seismic and sequence stratigraphy of Upper Cretaceous-Tertiary succession, eastern Abu-Gharadig Basin, Western Desert Egypt. Stratigraphy, 11(2), 109–141.

    Google Scholar 

  • Burchette, T. P., & Wright, V. P. (1992). Carbonate ramp depositional systems. Sedimentary Geology, 79(1–4), 3–57.

    Article  Google Scholar 

  • Catuneanu, O., Khalifa, M. A., & Wanas, H. A. (2006). Sequence stratigraphy of the Lower Cenomanian Bahariya Formation, Bahariya Oasis, Western Desert Egypt. Sedimentary Geology, 190, 121–137.

    Article  Google Scholar 

  • Chimmalgi, V. S., Al-Humond, J., Al-Sabea, S., Gazi, N., Bardalaye, J., Mudavakkat, A., Al-Enezi, H., Al-Zankawi, O., Ahsan, J., Abdulrazzaq, E., Tirkey, N., Kotecha, R., Snasiri, F., Jalan, S., Al-Zabbi, R., Al-Dousari, M., Al-Othman, M., Al-houti, N., Benamer, N., Elsherif, T., Surjaatmadja, J., Elmofti, M., (2013). Reactivating a tight carbonate reservoir in the Greater Burgan Field: Challenges, options and solutions. In: SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, March 10–13. SPE-164248-MS.

  • Darwish, M., Abu Khadrah, A. M., Abdel Hamid, M. L., Hamed, T. A. (1994). Sedimentology, environmental conditions and hydrocarbon habitat of the Bahariya Formation, central Abu Gharadig Basin, Western Desert, Egypt. Proceedings of the 12th Petroleum Exploration and Production Conference, Cairo, Egypt, Nov 12–15.

  • Dey, J., & Sen, S. (2018). Sequence stratigraphic model of Middle Permian Barakar Formation from a Marginal Gondwana Basin, India. Journal of Earth Science, 29, 745–754.

    Article  Google Scholar 

  • Dominik, W. (1985). Stratigraphie und Sedimentologie (Geochemie, Schwermineral analyse) der Oberkreide von Bahaiya und ihre Korrelation zum Dakhla-Becken (Western Desert, Ägypten). Berliner geowissenschaftliche Abhandlungen A 62 p. 173.

  • Egyptian General Petroleum Corporation (EGPC). (1992). Western Desert oil and gas fields: A comprehensive overview.

  • Egyptian General Petroleum Corporation (EGPC). (2019). Production: Whole Drilling Report.

  • Egypt Upstream Gateway (EUG), (2021). 2021 Bid Round Highlights. https://eug.petroleum.gov.eg/

  • El Atfy, H. (2011). Cretaceous palynology of the GPTSW-7 Well, Western Desert Egypt. LAP LAMBERT Academic Publishing GmbH & Co.

    Google Scholar 

  • El Beialy, S. Y., El Atfy, H. S., El Khoriby, E. M., & Abu-Zied, R. H. (2008). Palynostratigraphy, palynofacies and the source rock evaluation of the Cenomanian Bahariya Formation, GPTSW-7 well, north Western Desert Egypt. Journal of Environmental Science, 36, 63–88.

    Google Scholar 

  • El Beialy, S. Y., El Atfy, H. S., Zavada, M. S., El Khoriby, E. M., & Abu-Zied, R. H. (2010). Palynological, palynofacies, paleoenvironmental and organic geochemical studies on the Upper Cretaceous succession of the GPTSW-7 well, north Western Desert Egypt. Marine and Petroleum Geology, 27, 370–385.

    Article  Google Scholar 

  • El Gazzar, A. M., Moustafa, A. R., & Bentham, P. (2016). Structural evolution of the Abu Gharadig field area, Northern Western Desert Egypt. Journal of African Earth Sciences, 124, 340–354.

    Article  Google Scholar 

  • El Sharawy, M. S., & Nabawy, B. S. (2016). Determination of electrofacies using wireline logs based on multivariate statistical analysis for the Kareem Formation, Gulf of Sues. Egypt. Environmental Earth Sciences, 75, 1394.

    Article  Google Scholar 

  • El Sharawy, M. S., & Nabawy, B. S. (2019). Integration of electrofacies and hydraulic flow units to delineate reservoir quality in Uncored reservoirs: A case study, Nubia sandstone reservoir, Gulf of Suez. Egypt. Natural Resources Research, 28, 1587–1608.

    Article  Google Scholar 

  • Elhossainy, M. M., Abdelmaksoud, A., Ali, M., & Alrefaee, H. A. (2021). Integrated sedimentological and petrophysical characterization of the Lower Cenomanian clastic Bahariya reservoir in Abu Gharadig Basin, Western Desert. Egypt. Journal of African Earth Sciences, 184, 104380.

    Article  Google Scholar 

  • Farouk, S. (2015). Upper Cretaceous sequence stratigraphy of the Galala Plateaux, Western side of the Gulf of Suez Egypt. Marine and Petroleum Geology, 60, 136–158.

    Article  Google Scholar 

  • Farouk, S., Sen, S., Ganguli, S. S., Abuseda, H., & Debnath, A. (2021). Petrophysical assessment and permeability modeling utilizing core data and machine learning approaches – A study from the Badr El Din-1 field Egypt. Marine and Petroleum Geology, 133, 105265.

    Article  Google Scholar 

  • George, B. K., Clara, C., Al Mazrooei, S., Manseur, S., Abdou, M., Chong, T. S., Al Raeesi, M., (2012). Challenges and key learning for developing tight carbonate reservoirs. In: Abu Dhabi International Petroleum Exhibition and Conference (ADIPEC), Abu Dhabi, UAE, Nov 11–14. SPE 161693. https://doi.org/10.2118/161693-MS.

  • Ghassal, B. I., Littke, R., Atfy, H. E., Sindern, S., & Scholtysik, G. (2018). Source rock potential and depositional environment of Upper Cretaceous sedimentary rocks, Abu Gharadig Basin, Western Desert, Egypt: An integrated palynological, organic and inorganic geochemical study. International Journal of Coal Geology, 186, 14–40.

    Article  Google Scholar 

  • Gingras, M. K., MacMillan, B., & Balcom, B. J. (2002). Visualizing the internal physical characteristics of carbonate sediments with magnetic resonance imaging and petrography. Bulletin of Canadian Petroleum Geology, 50, 363–369.

    Article  Google Scholar 

  • Guiraud, R. (1998). Mesozoic rifting and basin inversion along the Northern African Tethyan margin: An overview. Geological Society, London, Special Publications, 132(1), 217–229.

    Article  Google Scholar 

  • Guiraud, R., & Bosworth, W. (1997). Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: Synthesis and implications to plate-scale tectonics. Tectonophysics, 282(1–4), 39–82.

    Article  Google Scholar 

  • Guiraud, R., & Maurin, J. C. (1992). Early cretaceous rifts of Western and Central Africa: An overview. Tectonophysics, 213(1–2), 153–168.

    Article  Google Scholar 

  • Guiraud, R., Bosworth, W., Thierry, J., & Delplanque, A. (2005). Phanerozoic geological evolution of Northern and Central Africa: An overview. Journal of African Earth Science, 43(1–3), 83–143.

    Article  Google Scholar 

  • Gunter, G. W., Finneran, J. M., Hartmann, D. J., Miller, J. D., (1997). Early determination of reservoir flow units using an integrated petrophysical method. In: SPE Annual Technical Conference and Exhibition, SPE-38679, pp. 373–380.

  • Guo, G., Diaz, M. A., Paz, F. J., Smalley, J., & Waninger, E. A. (2007). Rock typing as an effective tool for permeability and water-saturation modeling: A case study in a clastic reservoir in the Oriente Basin. SPE Reservoir Evaluation & Engineering, 10(6), 730–739.

    Article  Google Scholar 

  • Harris, N. B. (2006). Low-porosity haloes at stylolites in the feldspathic Upper Jurassic Ula sandstone, Norwegian North Sea: An integrated petrographic and chemical mass-balance approach. Journal of Sedimentary Research, 76, 444–459.

    Article  Google Scholar 

  • Heap, M. J., Baud, P., Reuschlé, T., & Meredith, P. G. (2014). Stylolites in limestones: Barriers to fluid flow? Geology, 42(1), 51–54.

    Article  Google Scholar 

  • Hewaidy, A. G., Elshahat, O. R., & Kamal, S. (2018). Stratigraphy, facies analysis and depositional environments of the Upper Unit of Abu Roash “E” member in the Abu Gharadig field, Western Desert Egypt. Journal of African Earth Sciences, 139, 26–37.

    Article  Google Scholar 

  • Kassab, M. A., Abbas, A. E., & Attiya, A. S. (2019). Hydrocarbon potential of Upper Bahariya member in Um Baraka oil field, North Western Desert Egypt. Journal of Astronomy and Geophysics, 8(1), 204–219.

    Google Scholar 

  • Khalda Petroleum Company, (2013). Well completion reports of AG-108 and AG-109, internal reports.

  • Khaled, K. A. (1999). Cretaceous Source rocks at the Abu Gharadig oil- and gasfield, Northern Western Desert Egypt. Journal of Petroleum Geology, 22(4), 377–395.

    Article  Google Scholar 

  • Koehn, D., Rood, M. P., Beaudoin, N., Bons, P. D., & Gomez-Rivas, E. (2016). A new stylolite classification scheme to estimate compaction and local permeability variation. Sedimentary Geology, 346, 60–71.

    Article  Google Scholar 

  • Kolodzie, S., (1980). Analysis of pore throat size and use of the Waxman–Smits equation to determine OOIP in Spindle Field, Colorado. Proceedings Society of Petroleum Engineers, 55th Annual Technical Fall Conference, SPE-9382.

  • Latief, A. I., Syofyan, S., Ab Hamid, T. M. T., Al Amoudi, M. A., Shabibi, T. A., (2019). Unlocking tight carbonate reservoir potential: Geological characterization to execution. In: SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, March 18–21. SPE-194712-MS.

  • Lind, I., Nykjaer, O., Priisholm, S., & Springer, N. (1994). Permeability of stylolite-bearing chalk. Journal of Petroleum Technology, 46, 986–993.

    Article  Google Scholar 

  • Lotfy, H. I. (1984). A geophysical study on the Qattara Depression Area, Western Desert. Thesis, El Minya University, Egypt.

    Google Scholar 

  • Mahmoud, H., Lotfy, H., & Bakr, A. (2019). A structural evolution of JG and JD fields, Abu Gharadig basin, Western Desert, Egypt, and its impact on hydrocarbon exploration. Journal of Petroleum Exploration and Production Technology, 9, 2555–2571.

    Article  Google Scholar 

  • Mansour, A., Gentzis, T., Wagreich, M., Tahoun, S. S., & Elewa, A. M. T. (2020). Short-term sea level changes of the Upper Cretaceous Carbonates: Calibration between palynomorphs composition, inorganic geochemistry, and stable isotopes. Minerals, 10, 1099.

    Article  Google Scholar 

  • Moustafa, A. R., (2008). Mesozoic-Cenozoic basin evolution in the Northern Western Desert of Egypt. In: Salem, M., El-Arnauti, A., Saleh, A. (eds) 3rd Symposium on the Sedimentary Basins of Libya, The Geology of East Libya, vol. 3, pp. 29–46.

  • Moustafa, A. R. (2013). Fold-related faults in the Syrian Arc belt of northern Egypt. Marine and Petroleum Geology, 48, 441–454.

    Article  Google Scholar 

  • Mutebi, S., Sen, S., Sserubiri, T., Rudra, A., Ganguli, S. S., & Radwan, A. E. (2021). Geological characterization of the Miocene-Pliocene succession in the Semliki Basin, Uganda: Implications for hydrocarbon exploration and drilling in the East African Rift System. Natural Resources Research, 30, 4329–4354.

    Article  Google Scholar 

  • Nabawy, B. S., & Al-Azazi, N. A. (2015). Reservoir zonation and discrimination using the routine core analyses data: The upper Jurassic Sabatayn sandstones as a case study, Sabatayn basin. Yemen. Arabian Journal of Geosciences, 8(8), 5511–5530.

    Article  Google Scholar 

  • Nabawy, B. S., Sediek, K. N., & Nafee, S. A. (2015). Pore fabric assignment using electrical conductivity of some Albian-Cenomanian sequences in north Eastern Desert Egypt. Arabian Journal of Geosciences, 8(8), 5601–5615.

    Article  Google Scholar 

  • Nabawy, B. S., Rashed, M. A., Mansour, A. S., & Afify, W. S. M. (2018). Petrophysical and microfacies analysis as a tool for reservoir rock typing and modeling: Rudeis Formation, offshore October Oil Field, Sinai. Marine and Petroleum Geology, 97, 260–276.

    Article  Google Scholar 

  • Pickett, G. R. (1966). A review of current techniques for determination of water saturation from logs. Journal of Petroleum Technology, 18(11), 1425–1433.

    Article  Google Scholar 

  • Rizk, M., Rafik, M., El-Behairy, A., Abdel-Nabi, M., (2013). Effect of petrophysical re-interpretation on matured field’s development planning and producing reserves boosting up in Abu El Gharadig Basin, Western Desert, Egypt. In: SPE North Africa Technical Conference & Exhibition, Cairo, Egypt, April 15–17. SPE-164701.

  • Said, R. (1990). The Geology of Egypt. A.A. Balkema, Rotterdam, Brookfield pp 729.

  • Salamy, S. P., Al-Mubarak, H. K., Hembling, D. E., Al-Ghamdi, M. S., (2006). Deployed smart technologies enablers for improving well performance in tight reservoirs-case: Shaybah Field, Saudi Arabia. In: Intelligent Energy Conference and Exhibition, Amsterdam, The Netherlands, April 11–13. SPE 99281. https://doi.org/10.2118/99281- MS.

  • Sarhan, M. A. (2017). Wrench tectonics of Abu Gharadig Basin, Western Desert, Egypt: A structural analysis for hydrocarbon prospects. Arabian Journal of Geosciences, 10, 399.

    Article  Google Scholar 

  • Sarhan, M. A. (2021). Geophysical appraisal for the sandy levels within Abu Roash C and E members in Abu Gharadig Field, Western Desert Egypt. Journal of Petroleum Exploration and Production, 11, 1101–1122.

    Article  Google Scholar 

  • Sarhan, M. A., & Collier, R. E. (2018). Distinguishing rift-related from inversion-related anticlines: Observations from the Abu Gharadig and Gindi Basins, Western Desert Egypt. Journal of African Earth Sciences, 145, 234–245.

    Article  Google Scholar 

  • Sarhan, M. A., Basal, A. M. K., & Ibrahim, I. M. (2017a). Integration of seismic interpretation and well logging analysis of Abu Roash D Member, Gindi Basin, Egypt: Implication for detecting and evaluating fractured carbonate reservoirs. Journal of African Earth Sciences, 135, 1–13.

    Article  Google Scholar 

  • Sarhan, M. A., Basal, A. M. K., & Ibrahim, I. L. (2017b). Seismic and well logging interpretation for evaluation of the lower Bahariya reservoir, southwest Qarun (SWQ) Field, Gindi Basin Egypt. Marine Geophysical Research, 38, 271–290.

    Article  Google Scholar 

  • Sen, S., & Dey, J. (2019). A field-scale overview of facies architectures and depositional environment integrating core and geophysical log data: Study from a Marginal Gondwana Basin, India. Journal of the Geological Society of India, 94, 238–244.

    Article  Google Scholar 

  • Sen, S., & Dey, J. (2020). Cyclic sedimentation in the Barakar Formation of the Karanpura Field, Marginal Gondwana Basin, India. Journal of the Geological Society of India, 95, 293–300.

    Article  Google Scholar 

  • Sen, S., Das, N., & Maiti, D. (2016). Facies analysis and depositional model of late Permian Raniganj formation: Study from Raniganj coal bed methane block. Journal of the Geological Society of India, 88, 503–516.

    Article  Google Scholar 

  • Sen, S., Abioui, M., Ganguli, S. S., Elsheikh, A., Debnath, A., Benssaou, M., & Abdelhady, A. A. (2021). Petrophysical heterogeneity of the early Cretaceous Alamein dolomite reservoir from North Razzak oil field, Egypt integrating well logs, core measurements, and machine learning approach. Fuel, 306, 121698.

    Article  Google Scholar 

  • Serra, O. (1988). Fundamentals of well-log interpretation. 1. The acquisition of logging data (3rd ed.). Elsevier.

    Google Scholar 

  • Slatt, R. (2006). Stratigraphic reservoir characterization for petroleum geologists, geophysicist and engineers. Handbook of Petroleum Exploration and Production, 6, 177–186.

    Google Scholar 

  • Winland, H. D. (1972). Oil accumulation in response to pore size changes, Weyburn Field, Saskatchewan. Amoco Production Research Report. F72-G-25.

  • Zobaa, M. K., Oboh-Ikuenobe, F. E., & Ibrahim, M. I. (2011). The Cenomanian/Turonian oceanic anoxic event in the Razzak Field, North Western Desert, Egypt: Source rock potential and paleoenvironmental association. Marine and Petroleum Geology, 28, 1475–1482.

    Article  Google Scholar 

Download references

Acknowledgments

Authors express their sincere gratitude to Professor John Carranza (Editor-in-Chief) and the four reviewers for their constructive reviews which benefited our work. The authors are grateful to Egyptian General Petroleum Corporation (EGPC) for the dataset and the permission to publish this study. Interpretation presented in this paper is solely of the authors and does not necessarily reflect their respective organizations.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

SF and SS were involved in conceptualization; SF, SS and HA contributed to methodology, formal analysis and investigation; SS contributed to the writing-original draft preparation; SF supervised the project. All authors were involved in writing-review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Souvik Sen.

Ethics declarations

Conflict of Interest

The authors have no competing interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farouk, S., Sen, S., Abuseda, H. et al. Petrophysical Characterization of the Turonian and Cenomanian Intervals in the Abu Gharadig Field, Western Desert, Egypt: Inferences on Reservoir Quality and Resource Development. Nat Resour Res 31, 1793–1824 (2022). https://doi.org/10.1007/s11053-022-10069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10069-0

Keywords

  • Petrophysical characterization
  • Reservoir quality
  • Permeability anisotropy
  • Bahariya
  • Abu Roash