Adegoke, A. K., Yandoka, B. S., Abdullah, W. H., & Akaegbobi, I. M. (2015). Molecular geochemical evaluation of late cretaceous sediments from chad (Bornu) basin, NE Nigeria: Implications for paleodepositional conditions, source input and thermal maturation. Arabian Journal of Geosciences, 8, 1591–1609.
Article
Google Scholar
Al-Areeq, N. M., & Maky, A. F. (2015). Organic geochemical characteristics of crude oils and oil-source rock correlation in the Sunah oilfield, Masila Region, Eastern Yemen. Marine and Petroleum Geology, 63, 17–27.
Article
Google Scholar
Algeo, T. J., & Tribovillard, N. (2009). Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268, 211–225.
Article
Google Scholar
Arthur, M. A., & Sageman, B. B. (1994). Marine black shales: Depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22, 499–551.
Article
Google Scholar
Awan, R. S., Liu, C. L., Gong, H. W., Dun, C., Tong, C., & Chamssidini, L. G. (2020). Paleo-sedimentary environment in relation to enrichment of organic matter of early Cambrian black rocks of Niutitang formation from Xiangxi area China. Marine and Petroleum Geology, 112, 1–20.
Article
Google Scholar
Bai, Y. B., Zhao, J. Z., Zhao, Z. L., Yin, Y. Y., & Tong, J. N. (2013). Accumulation conditions and characteristics of the Chang 7 tight oil reservoir of the Yanchang Formation in Zhidan area, Ordos Basin. Oil & Gas Geology, 5, 631–639.
Google Scholar
Baioumy, H., Salim, A. M. A., Arifin, M. H., Anuar, M. N. A., & Musa, A. A. (2018). Geochemical characteristics of the Paleogene-Neogene coals and black shales from Malaysia: Implications for their origin and hydrocarbon potential. Journal of Natural Gas Science and Engineering, 51, 73–88.
Article
Google Scholar
Baklitiari, A. R., Zakaria, M. P., Yaziz, M. I., Lajis, M. H., Bi, X., Shafiee, M. M., & Sakari, M. (2010). Distribution of PAHS and n-alkanes in Klang River Surface Sediments, Malaysia. Pertanika Journal of Science & Technology, 18, 167–169.
Google Scholar
Bendoraitis, J. G., Brown, B. L., & Hepner, L. S. (1962). Isoprenoid hydrocarbons in petroleum. Isolation of 2,6,10,14-Tetramethylpentadecane by high temperature gas-liquid chromatography. Analytical Chemistry, 34, 49–53.
Article
Google Scholar
Bojiang, F. (2021). Characteristics and origin of organic matter in Triassic lacustrine shale from Fuxian oilfield. Frontiers in Earth Science, 9, 752954. https://doi.org/10.3389/feart.2021.752954
Article
Google Scholar
Brooks, J. D., Gould, K., & Smith, J. W. (1969). Isoprenoid hydrocarbons in coal and petroleum. Nature, 222, 257–259.
Article
Google Scholar
Bruggmann, S., Scholz, F., Klaebe, R. M., Canfield, D. E., & Frei, R. (2019). Chromium isotope cycling in the water column and sediments of the Peruvian continental margin. Geochimica et Cosmochimica Acta, 257, 224–242.
Article
Google Scholar
Brumsack, H. J. (2006). The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography Palaeoclimatology Palaeoecology, 232, 344–361.
Article
Google Scholar
Canfield, D. E., Zhang, S., Frank, A. B., Wang, X., Wang, H., Su, J., Ye, Y., & Frei, R. (2018). Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nature Communications, 9(1), 2871.
Article
Google Scholar
Caplan, M. L., & Bustin, R. M. (1999). Devonian-Carboniferous Hangenberg mass extinction event, widespread organic-rich mudrock and anoxia: Causes and consequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 148, 187–207.
Article
Google Scholar
Castellini, D. G., Dickens, G. R., Snyder, G. T., & Ruppel, C. D. (2006). Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico. Chemical Geology, 226(1–2), 1–30.
Article
Google Scholar
Cecil, C. B. (1990). Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology, 18, 533–536.
Article
Google Scholar
Cluff, R. M. (1980). Paleoenvironment of the New Albany Shale Group (Devonian-Mississippian) of Illinois. Journal of Sedimentary Research, 50, 767–780.
Article
Google Scholar
Demaison, G. J. (1991). Anoxia vs. Productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?: discussion (1). American Association of Petroleum Geologists Bulletin, 75, 449.
Google Scholar
Demaison, G. J., & Moore, G. T. (1980). Anoxic environments and oil source bed genesis. American Association of Petroleum Geologists Bulletin, 64, 1179–1209.
Google Scholar
Ding, J., Zhang, J., Huo, Z., Shen, B., Shi, G., Yang, Z., Li, X., & Li, C. (2021). Controlling factors and formation models of organic matter accumulation for the upper Permian Dalong formation black shale in the lower Yangtze Region, South China: constraints from geochemical evidence. ACS Omega, 6(5), 3681–3692.
Article
Google Scholar
Ding, J., Zhang, J., Tang, X., Huo, Z., Han, S., Lang, Y., & Liu, T. (2018). Elemental geochemical evidence for depositional conditions and organic matter enrichment of black rock series strata in an inter-platform basin: The lower Carboniferous Datang formation, southern Guizhou. Southwest China. Minerals, 8, 509.
Google Scholar
Duan, Y. (2012). Geochemical characteristics of crude oil in fluvial deposits from Maling oilfield of Ordos Basin, China. Organic Geochemistry, 52, 35–43.
Article
Google Scholar
Evenick, J. C. (2016). Evaluating source rock organofacies and paleodepositional environments using bulk rock compositional data and pristane/phytane ratios. Marine and Petroleum Geology, 78, 507–515.
Article
Google Scholar
Fan, B. (2022). Effect of lithological heterogeneity on shale oil occurrence—a case study in Ansai oil field. Arabian Journal of Geosciences, 15, 107.
Article
Google Scholar
Fan, B. J., & Shi, L. (2019). Deep-lacustrine shale heterogeneity and its impact on hydrocarbon generation, expulsion, and retention: A case study from the upper Triassic Yanchang Formation, Ordos Basin, China. Natural Resources Research, 28, 241–257. https://doi.org/10.1007/s11053-018-9387-2
Article
Google Scholar
Fan, Y. H., Hong-Jun, Q. U., Wang, H., Yang, X. C., & Feng, Y. W. (2012). The application of trace elements analysis to identifying sedimentary media environment: A case study of late triassic strata in the middle part of western ordos basin. Geology in China, 39, 382–389. (in Chinese with English abstract).
Google Scholar
Fu, J., Sheng, G., Xu, J., Eglinton, G., Gowar, A. P., Jia, R., Fan, S., & Peng, P. (1990). Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments. Organic Geochemistry, 16, 769–779.
Article
Google Scholar
Fu, X., Jian, W., Chen, W., Feng, X. L., Wang, D., Song, C. Y., & Zeng, S. Q. (2015). Organic accumulation in lacustrine rift basin: Constraints from mineralogical and multiple geochemical proxies. International Journal of Earth Sciences, 104, 495–511.
Article
Google Scholar
Ganeshram, R. S., François, R., Commeau, J., & Brown-Leger, S. L. (2003). An experimental investigation of barite formation in seawater. Geochimica Et Cosmochimica Acta, 67(14), 2599–2605.
Article
Google Scholar
Grantham, P. J., & Wakefield, L. L. (1988). Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Organic Geochemistry, 12, 61–73.
Article
Google Scholar
Gromet, L. P., Haskin, L. A., Korotev, R. L., & Dymek, R. F. (1984). The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica Et Cosmochimica Acta, 48, 2469–2482.
Article
Google Scholar
Guo, Y. (2013). Study on sedimentary facies and reservoir characteristics of Triassic Yanchang Formation 7 in Ansai Oilfield, Ordos Basin. (pp. 3–5) Doctoral Dissertation, Northwestern University.
Hatch, J. R., & Leventhal, J. S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99, 65–82.
Article
Google Scholar
Ingall, E. D., Bustin, M., & Van Capellen, P. (1993). Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochimica et Cosmochimica Acta, 57, 303–316.
Article
Google Scholar
Ingall, E., & Jahnke, R. (1994). The Evidence for enhanced phosphorus regeneration from the marine sediments overlain by oxygen-depleted waters. Geochimica et Cosmochimica Acta, 58, 2571–2575.
Article
Google Scholar
Kohn, M. J. (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proceedings of the National academy of Sciences of the United States of America, 107, 19691–19695.
Article
Google Scholar
Liu, B., Bechtel, A., Sachsenhofer, R. F., Gross, D., Gratzer, R., & Chen, X. (2017). Depositional environment of oil shale within the second member of Permian Lucaogou formation in the Santanghu Basin, Northwest China. International Journal of Coal Geology, 175, 10–25.
Article
Google Scholar
Liu, B., Sun, J., Zhang, Y., He, J., Fu, X., Yang, L., Xing, J., & Zhao, X. (2021). Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou formation in the Changling sag, southern Songliao Basin, NE China. Petroleum Exploration and Development, 48, 608–624.
Article
Google Scholar
Liu, M., Mooney, W. D., Li, S., Okaya, N., & Detweileret, S. (2006). Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. Tectonophysics, 420, 253–266.
Article
Google Scholar
Loucks, R. G., & Ruppel, S. C. (2007). Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. American Association of Petroleum Geologists Bulletin, 91, 579–601.
Article
Google Scholar
Lu, Y. B., Hao, F., Lu, Y. C., Yan, D. T., Xu, S., Shu, Z. G., Wang, Y. X., & Wu, L. Y. (2020). Lithofacies and depositional mechanisms of the Ordovician-Silurian Wufeng–Longmaxi organic-rich shales in the Upper Yangtze area, southern China. American Association of Petroleum Geologists Bulletin, 104, 97–129.
Article
Google Scholar
Luo, Q., George, S. C., Xu, Y., & Zhong, N. (2016). Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: Implications for thermal maturity and biological sources. Organic Geochemistry, 99, 23–37.
Article
Google Scholar
McLennan, S. M. (2001). The Relationships between the trace element composition of sedimentary rocks and the upper continental crust. Geochemistry Geophysics Geosystems., 2, 1021–1041.
Article
Google Scholar
McManus, J., Berelson, W. M., Hammond, D. E., & Klinkhammer, G. P. (1999). Barium cycling in the north pacific: implications for the utility of Ba as a paleoproductivity and paleoalkalinity proxy. Paleoceanography, 14(1), 53–61.
Article
Google Scholar
Mecozzi, M., Scarpiniti, M., Ragosta, E., Pietroletti, M., & Mento, R. D. (2009). Proposal for a deconvolution procedure for the gas chromatographic estimation of pristane and phytane in marine sediments. International Journal of Environment and Health, 3, 126–138.
Article
Google Scholar
Meyers, P. A. (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27, 213–250.
Article
Google Scholar
Meyers, P. A., & Arnaboldi, M. (2005). Trans-Mediterranean comparison of geochemical paleoproductivity proxies in a mid-Pleistocene interrupted sapropel. Paleogeogr Paleoclimatol Paleoecol, 222, 313–328.
Article
Google Scholar
Moldowan, J. M., Fago, F. J., Carlson, R. M. K., Young, D. C., Duvne, G., Clardy, J., Schoell, M., Pillinger, C. T., & Watt, D. S. (1991). Rearranged hopanes in sediments and petroleum. Geochimica Et Cosmochimica Acta, 55, 3333–3353.
Article
Google Scholar
Montero-Serrano, J. C., Föllmi, K. B., Adatte, T., Spangenberg, J. E., Tribovillard, N., Fantasia, A., & Suan, G. (2015). Continental weathering and redox conditions during the early Toarcian Oceanic Anoxic Event in the northwestern Tethys: Insight from the Posidonia Shale section in the Swiss Jura Mountains. Palaeogeography Palaeoclimatology Palaeoecology, 429, 83–99.
Article
Google Scholar
Moradi, A. V., Sarı, A., & Akkaya, P. (2016). Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: Implications for paleoclimate conditions, source-area weathering, provenance and tectonic setting. Sedimentary Geology, 341, 289–303.
Article
Google Scholar
Murphy, A. E., Sageman, B. B., Hollander, D. J., Lyons, T. W., & Brett, C. E. (2000). Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography and Paleoclimatology, 15, 280–291.
Article
Google Scholar
Myers, K.J. & Wignall, P.B. (1987). Understanding Jurassic organic-rich mudrocks—new concepts using Gamma-ray Spectrometry and Palaeoecology: examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire, (pp. 172–189) Marine Clastic Sedimentology, Grahm & Trotman, (ISBN: 978-94-009-3241-8)
Pang, X., Li, M., Li, S., & Jin, Z. (2003). Geochemistry of petroleum systems in the Niuzhuang South Slope of Bohai Bay Basin. Part 2: Evidence for significant contribution of mature source rocks to “immature oils” in the Bamianhe field. Organic Geochemistry, 34, 931–950.
Article
Google Scholar
Pang, Z. L., Zou, C. N., Tao, S. Z., Yang, Z., & Wu, S. T. (2012). Formation, distribution and resource evaluation of tight oil in China. Engineering Science, 14, 60–67. (in Chinese with English abstract).
Google Scholar
Paytan, A. (1996). Glacial to interglacial fluctuations in productivity in the equatorial pacific as indicated by Marine Barite. Science, 274(5291), 1355–1357.
Article
Google Scholar
Perdue, E. M., & Koprivnjak, J. F. (2007). Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments. Estuarine Coastal and Shelf Science, 73, 65–72.
Article
Google Scholar
Peters, K.E. & Moldowan, J.M. (1993). The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments (363 p.). Prentice Hall, New Jersey, (ISBN: 0130867527)
Piper, D. Z., & Perkins, R. B. (2004). A modern vs. Permian black shale—the hydrography, primary productivity, and water-column chemistry of deposition. Chemical Geology, 206, 177–197.
Article
Google Scholar
Powell, T. G. (1986). Petroleum geochemistry and depositional setting of lacustrine source rocks. Marine and Petroleum Geology, 3, 200–219.
Article
Google Scholar
Powell, T. G., & Mckirdy, D. M. (1973). Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia. Nature Physical Science, 243, 37–39.
Article
Google Scholar
Ren, Z. L., Zhang, S., Gao, S. L., Cui, J. P., & Xiao, Y. Y. (2007). Tectonic thermal history and its significance on the formation of oil and gas accumulation and mineral deposit in Ordos Basin. Science in China, 50(2 Supplement), 27–38.
Article
Google Scholar
Rimmer, S. M. (2004). Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian Basin (USA). Chemical Geology, 206, 373–391.
Article
Google Scholar
Rimmer, S. M., Thompson, J. A., Goodnight, S. A., & Robl, T. L. (2004). Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215, 125–154.
Article
Google Scholar
Sageman, B. B., Murphy, A. E., Werne, J. P., Ver Straeten, C. A., Hollander, D. J., & Lyons, T. W. (2003). A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin. Chemical Geology, 195, 229–273.
Article
Google Scholar
Schlanger, S. O., & Jenkyns, H. C. (1976). Cretaceous Oceanic Anoxic Events: Causes and consequences. Geologie En Mijnbouw, 55, 179–184.
Google Scholar
Schoepfer, S. D., Henderson, C. M., Garrison, G. H., Foriel, J., Ward, P. D., Selby, D., Hower, J. C., Algeo, T. J., & Shen, Y. (2013). Termination of a continent-margin upwelling system at the Permian-Triassic boundary (Opal Creek, Alberta, Canada)[J]. Global & Planetary Change, 105, 21–35.
Article
Google Scholar
Seifert, W. K., & Moldowan, J. M. (1981). Paleoreconstruction by biological markers. Geochimica et Cosmochimica Acta, 45, 783–794.
Article
Google Scholar
Shen, J., Chen, J., Algeo, T. J., Feng, Q., Yu, J., Xu, Y. G., Xu, G., Lei, Y., Planavsky, N. J., & Xie, S. (2021). Mercury fluxes record regional volcanism in the South China craton prior to the end-Permian mass extinction. Geology, 49, 452–456.
Article
Google Scholar
Shen, J., Schoepfer, S. D., Feng, Q., Zhou, L., Yu, J., Song, H., Wei, H., & Algeo, T. J. (2015). Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth-Science Reviews, 149, 136–162.
Article
Google Scholar
Singh, A. K., & Kumar, A. (2020). Assessment of thermal maturity, source rock potential and Paleodepositional environment of the Paleogene Lignites in Barsingsar, Bikaner-Nagaur Basin, Western Rajasthan, India. Natural Resources Research, 29, 1283–1305.
Article
Google Scholar
Summons, R. E., Powell, T. G., & Boreham, C. J. (1988). Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. composition of extractable hydrocarbons. Geochimica Et Cosmochimica Acta, 52, 1747–1763.
Article
Google Scholar
Sun, X., Liang, Q. S., Jiang, C. F., Enriquez, D., Zhang, T. W., & Hackley, P. (2017). Liquid hydrocarbon characterization of the lacustrine Yanchang Formation, Ordos Basin, China: Organic-matter source variation and thermal maturity. Interpretation, 5, 225–242.
Article
Google Scholar
Tao, H., Pang, X., Shu, J., Wang, Q., & Hui, L. (2018). Oil content evaluation of lacustrine organic-rich shale with strong heterogeneity: A case study of the Middle Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin, NW China. Fuel, 221, 196–205.
Article
Google Scholar
Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232, 12–32.
Article
Google Scholar
Tyson, R. V., & Pearson, T. H. (1991). Modern and ancient continental shelf anoxia: An overview. Arctic and Alpine Research, 58, 1–24.
Google Scholar
Wang, S. M. (2011). Ordos basin tectonic evolution and structural control of coal. Geological Bulletin of China, 30, 544–552.
Google Scholar
Wang, Z., Wang, J., Fu, X., Zhan, W., Armstrong-Altrin, J. S., Yu, F., Feng, X., Song, C., & Zeng, S. (2018). Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin, Tibet: implications for paleoenvironment, provenance, and tectonic setting. Journal of Asian Earth Sciences, 160, 118–135.
Article
Google Scholar
Wei, W., & Algeo, T. J. (2020). Secular variation in the elemental composition of marine shales since 840 Ma: Tectonic and seawater influences. Geochimica et Cosmochimica Acta, 287(1365), 367–390.
Article
Google Scholar
Wignall, P. B., & Twitchett, R. J. (1996). Oceanic anoxia and the end Permian mass extinction. Science, 272, 1155–1158.
Article
Google Scholar
Yan, D., Wang, H., Fu, Q., et al. (2015). Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: Implications for organic matter accumulation[J]. Marine & Petroleum Geology, 65, 290–301.
Article
Google Scholar
Yang, F., Chen, G., Kang, Y., et al. (2020). Late Ordovician provenance and depositional setting in the southwestern Ordos Block, China: Constraints from zircon U-Pb geochronology. Geosciences Journal, 24, 121–139.
Article
Google Scholar
Yu, Y., Li, Y., Guo, Z., & Zou, H. (2016). Distribution and sources of n-alkanes in surface sediments of Taihu lake, china. Archives of Environmental Protection, 42, 49–55.
Article
Google Scholar
Zhang, L., Sun, M., Wang, S., & Yu, X. (1998). The composition of shales from the Ordos basin, China: Effects of source weathering and diagenesis. Sedimentary Geology, 116, 129–141.
Article
Google Scholar
Zhang, W., Yang, H., & Peng, P. (2009). The influence of late triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin. Geochimica (Beijing), 38, 573–582. (in Chinese with English abstract).
Google Scholar