Skip to main content

Geochemical Characteristics and Paleoenvironment of Organic-Rich Triassic Shale in the Central Ordos Basin

Abstract

With six wells currently producing > 5 tons of oil per day, the organic-rich Chang-7 shale of the Triassic Yanchang Formation in the central Ordos Basin, China, has shown great potential to be a significant shale oil/gas play. To provide (a) theoretical and practical basis for further exploration and development activities in this play and (b) guidance for exploitation of other play of similar type, it is critical to understand what the main controlling factors are for the enrichment of organic matter in the Chang-7 shale and under what environmental and climatic conditions was the organic-rich shale deposited and preserved. To tackle these questions, a series of comprehensive lithological, organic geochemical and elements analyses was carried out in this study. The Chang-73 shale has a thickness of 2–10 m and consists of primarily massive to laminated shales with occasional thin-bedded silty sandstone layers, which were deposited in a shallow to semi-deep lake environment. It has an average TOC of ~ 4%, the majority of which is Types II1 and II2 kerogen, indicating a mixed origin. The shale is currently in a moderate thermal evolutionary stage with average S1 of 3.55 mg/g, S2 of 8.54 mg/g and HI of 285.02 mg/g, representing a moderate- to high-quality source rock. Element data indicated that the shale was developed in a freshwater column that had dysoxic to anoxic conditions under a generally warm and humid climate setting. Organic matter in the shale had a mixed source including in situ production and terrestrial input from rivers, which were almost of the same importance in contributing to the enrichment of organic matter.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Source inputs of shale organic matter in study area

Figure 10
Figure 11
Figure 12

References

  • Adegoke, A. K., Yandoka, B. S., Abdullah, W. H., & Akaegbobi, I. M. (2015). Molecular geochemical evaluation of late cretaceous sediments from chad (Bornu) basin, NE Nigeria: Implications for paleodepositional conditions, source input and thermal maturation. Arabian Journal of Geosciences, 8, 1591–1609.

    Article  Google Scholar 

  • Al-Areeq, N. M., & Maky, A. F. (2015). Organic geochemical characteristics of crude oils and oil-source rock correlation in the Sunah oilfield, Masila Region, Eastern Yemen. Marine and Petroleum Geology, 63, 17–27.

    Article  Google Scholar 

  • Algeo, T. J., & Tribovillard, N. (2009). Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268, 211–225.

    Article  Google Scholar 

  • Arthur, M. A., & Sageman, B. B. (1994). Marine black shales: Depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22, 499–551.

    Article  Google Scholar 

  • Awan, R. S., Liu, C. L., Gong, H. W., Dun, C., Tong, C., & Chamssidini, L. G. (2020). Paleo-sedimentary environment in relation to enrichment of organic matter of early Cambrian black rocks of Niutitang formation from Xiangxi area China. Marine and Petroleum Geology, 112, 1–20.

    Article  Google Scholar 

  • Bai, Y. B., Zhao, J. Z., Zhao, Z. L., Yin, Y. Y., & Tong, J. N. (2013). Accumulation conditions and characteristics of the Chang 7 tight oil reservoir of the Yanchang Formation in Zhidan area, Ordos Basin. Oil & Gas Geology, 5, 631–639.

    Google Scholar 

  • Baioumy, H., Salim, A. M. A., Arifin, M. H., Anuar, M. N. A., & Musa, A. A. (2018). Geochemical characteristics of the Paleogene-Neogene coals and black shales from Malaysia: Implications for their origin and hydrocarbon potential. Journal of Natural Gas Science and Engineering, 51, 73–88.

    Article  Google Scholar 

  • Baklitiari, A. R., Zakaria, M. P., Yaziz, M. I., Lajis, M. H., Bi, X., Shafiee, M. M., & Sakari, M. (2010). Distribution of PAHS and n-alkanes in Klang River Surface Sediments, Malaysia. Pertanika Journal of Science & Technology, 18, 167–169.

    Google Scholar 

  • Bendoraitis, J. G., Brown, B. L., & Hepner, L. S. (1962). Isoprenoid hydrocarbons in petroleum. Isolation of 2,6,10,14-Tetramethylpentadecane by high temperature gas-liquid chromatography. Analytical Chemistry, 34, 49–53.

    Article  Google Scholar 

  • Bojiang, F. (2021). Characteristics and origin of organic matter in Triassic lacustrine shale from Fuxian oilfield. Frontiers in Earth Science, 9, 752954. https://doi.org/10.3389/feart.2021.752954

    Article  Google Scholar 

  • Brooks, J. D., Gould, K., & Smith, J. W. (1969). Isoprenoid hydrocarbons in coal and petroleum. Nature, 222, 257–259.

    Article  Google Scholar 

  • Bruggmann, S., Scholz, F., Klaebe, R. M., Canfield, D. E., & Frei, R. (2019). Chromium isotope cycling in the water column and sediments of the Peruvian continental margin. Geochimica et Cosmochimica Acta, 257, 224–242.

    Article  Google Scholar 

  • Brumsack, H. J. (2006). The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography Palaeoclimatology Palaeoecology, 232, 344–361.

    Article  Google Scholar 

  • Canfield, D. E., Zhang, S., Frank, A. B., Wang, X., Wang, H., Su, J., Ye, Y., & Frei, R. (2018). Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nature Communications, 9(1), 2871.

    Article  Google Scholar 

  • Caplan, M. L., & Bustin, R. M. (1999). Devonian-Carboniferous Hangenberg mass extinction event, widespread organic-rich mudrock and anoxia: Causes and consequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 148, 187–207.

    Article  Google Scholar 

  • Castellini, D. G., Dickens, G. R., Snyder, G. T., & Ruppel, C. D. (2006). Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico. Chemical Geology, 226(1–2), 1–30.

    Article  Google Scholar 

  • Cecil, C. B. (1990). Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology, 18, 533–536.

    Article  Google Scholar 

  • Cluff, R. M. (1980). Paleoenvironment of the New Albany Shale Group (Devonian-Mississippian) of Illinois. Journal of Sedimentary Research, 50, 767–780.

    Article  Google Scholar 

  • Demaison, G. J. (1991). Anoxia vs. Productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?: discussion (1). American Association of Petroleum Geologists Bulletin, 75, 449.

    Google Scholar 

  • Demaison, G. J., & Moore, G. T. (1980). Anoxic environments and oil source bed genesis. American Association of Petroleum Geologists Bulletin, 64, 1179–1209.

    Google Scholar 

  • Ding, J., Zhang, J., Huo, Z., Shen, B., Shi, G., Yang, Z., Li, X., & Li, C. (2021). Controlling factors and formation models of organic matter accumulation for the upper Permian Dalong formation black shale in the lower Yangtze Region, South China: constraints from geochemical evidence. ACS Omega, 6(5), 3681–3692.

    Article  Google Scholar 

  • Ding, J., Zhang, J., Tang, X., Huo, Z., Han, S., Lang, Y., & Liu, T. (2018). Elemental geochemical evidence for depositional conditions and organic matter enrichment of black rock series strata in an inter-platform basin: The lower Carboniferous Datang formation, southern Guizhou. Southwest China. Minerals, 8, 509.

    Google Scholar 

  • Duan, Y. (2012). Geochemical characteristics of crude oil in fluvial deposits from Maling oilfield of Ordos Basin, China. Organic Geochemistry, 52, 35–43.

    Article  Google Scholar 

  • Evenick, J. C. (2016). Evaluating source rock organofacies and paleodepositional environments using bulk rock compositional data and pristane/phytane ratios. Marine and Petroleum Geology, 78, 507–515.

    Article  Google Scholar 

  • Fan, B. (2022). Effect of lithological heterogeneity on shale oil occurrence—a case study in Ansai oil field. Arabian Journal of Geosciences, 15, 107.

    Article  Google Scholar 

  • Fan, B. J., & Shi, L. (2019). Deep-lacustrine shale heterogeneity and its impact on hydrocarbon generation, expulsion, and retention: A case study from the upper Triassic Yanchang Formation, Ordos Basin, China. Natural Resources Research, 28, 241–257. https://doi.org/10.1007/s11053-018-9387-2

    Article  Google Scholar 

  • Fan, Y. H., Hong-Jun, Q. U., Wang, H., Yang, X. C., & Feng, Y. W. (2012). The application of trace elements analysis to identifying sedimentary media environment: A case study of late triassic strata in the middle part of western ordos basin. Geology in China, 39, 382–389. (in Chinese with English abstract).

    Google Scholar 

  • Fu, J., Sheng, G., Xu, J., Eglinton, G., Gowar, A. P., Jia, R., Fan, S., & Peng, P. (1990). Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments. Organic Geochemistry, 16, 769–779.

    Article  Google Scholar 

  • Fu, X., Jian, W., Chen, W., Feng, X. L., Wang, D., Song, C. Y., & Zeng, S. Q. (2015). Organic accumulation in lacustrine rift basin: Constraints from mineralogical and multiple geochemical proxies. International Journal of Earth Sciences, 104, 495–511.

    Article  Google Scholar 

  • Ganeshram, R. S., François, R., Commeau, J., & Brown-Leger, S. L. (2003). An experimental investigation of barite formation in seawater. Geochimica Et Cosmochimica Acta, 67(14), 2599–2605.

    Article  Google Scholar 

  • Grantham, P. J., & Wakefield, L. L. (1988). Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Organic Geochemistry, 12, 61–73.

    Article  Google Scholar 

  • Gromet, L. P., Haskin, L. A., Korotev, R. L., & Dymek, R. F. (1984). The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica Et Cosmochimica Acta, 48, 2469–2482.

    Article  Google Scholar 

  • Guo, Y. (2013). Study on sedimentary facies and reservoir characteristics of Triassic Yanchang Formation 7 in Ansai Oilfield, Ordos Basin. (pp. 3–5) Doctoral Dissertation, Northwestern University.

  • Hatch, J. R., & Leventhal, J. S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99, 65–82.

    Article  Google Scholar 

  • Ingall, E. D., Bustin, M., & Van Capellen, P. (1993). Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochimica et Cosmochimica Acta, 57, 303–316.

    Article  Google Scholar 

  • Ingall, E., & Jahnke, R. (1994). The Evidence for enhanced phosphorus regeneration from the marine sediments overlain by oxygen-depleted waters. Geochimica et Cosmochimica Acta, 58, 2571–2575.

    Article  Google Scholar 

  • Kohn, M. J. (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proceedings of the National academy of Sciences of the United States of America, 107, 19691–19695.

    Article  Google Scholar 

  • Liu, B., Bechtel, A., Sachsenhofer, R. F., Gross, D., Gratzer, R., & Chen, X. (2017). Depositional environment of oil shale within the second member of Permian Lucaogou formation in the Santanghu Basin, Northwest China. International Journal of Coal Geology, 175, 10–25.

    Article  Google Scholar 

  • Liu, B., Sun, J., Zhang, Y., He, J., Fu, X., Yang, L., Xing, J., & Zhao, X. (2021). Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou formation in the Changling sag, southern Songliao Basin, NE China. Petroleum Exploration and Development, 48, 608–624.

    Article  Google Scholar 

  • Liu, M., Mooney, W. D., Li, S., Okaya, N., & Detweileret, S. (2006). Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. Tectonophysics, 420, 253–266.

    Article  Google Scholar 

  • Loucks, R. G., & Ruppel, S. C. (2007). Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. American Association of Petroleum Geologists Bulletin, 91, 579–601.

    Article  Google Scholar 

  • Lu, Y. B., Hao, F., Lu, Y. C., Yan, D. T., Xu, S., Shu, Z. G., Wang, Y. X., & Wu, L. Y. (2020). Lithofacies and depositional mechanisms of the Ordovician-Silurian Wufeng–Longmaxi organic-rich shales in the Upper Yangtze area, southern China. American Association of Petroleum Geologists Bulletin, 104, 97–129.

    Article  Google Scholar 

  • Luo, Q., George, S. C., Xu, Y., & Zhong, N. (2016). Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: Implications for thermal maturity and biological sources. Organic Geochemistry, 99, 23–37.

    Article  Google Scholar 

  • McLennan, S. M. (2001). The Relationships between the trace element composition of sedimentary rocks and the upper continental crust. Geochemistry Geophysics Geosystems., 2, 1021–1041.

    Article  Google Scholar 

  • McManus, J., Berelson, W. M., Hammond, D. E., & Klinkhammer, G. P. (1999). Barium cycling in the north pacific: implications for the utility of Ba as a paleoproductivity and paleoalkalinity proxy. Paleoceanography, 14(1), 53–61.

    Article  Google Scholar 

  • Mecozzi, M., Scarpiniti, M., Ragosta, E., Pietroletti, M., & Mento, R. D. (2009). Proposal for a deconvolution procedure for the gas chromatographic estimation of pristane and phytane in marine sediments. International Journal of Environment and Health, 3, 126–138.

    Article  Google Scholar 

  • Meyers, P. A. (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27, 213–250.

    Article  Google Scholar 

  • Meyers, P. A., & Arnaboldi, M. (2005). Trans-Mediterranean comparison of geochemical paleoproductivity proxies in a mid-Pleistocene interrupted sapropel. Paleogeogr Paleoclimatol Paleoecol, 222, 313–328.

    Article  Google Scholar 

  • Moldowan, J. M., Fago, F. J., Carlson, R. M. K., Young, D. C., Duvne, G., Clardy, J., Schoell, M., Pillinger, C. T., & Watt, D. S. (1991). Rearranged hopanes in sediments and petroleum. Geochimica Et Cosmochimica Acta, 55, 3333–3353.

    Article  Google Scholar 

  • Montero-Serrano, J. C., Föllmi, K. B., Adatte, T., Spangenberg, J. E., Tribovillard, N., Fantasia, A., & Suan, G. (2015). Continental weathering and redox conditions during the early Toarcian Oceanic Anoxic Event in the northwestern Tethys: Insight from the Posidonia Shale section in the Swiss Jura Mountains. Palaeogeography Palaeoclimatology Palaeoecology, 429, 83–99.

    Article  Google Scholar 

  • Moradi, A. V., Sarı, A., & Akkaya, P. (2016). Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: Implications for paleoclimate conditions, source-area weathering, provenance and tectonic setting. Sedimentary Geology, 341, 289–303.

    Article  Google Scholar 

  • Murphy, A. E., Sageman, B. B., Hollander, D. J., Lyons, T. W., & Brett, C. E. (2000). Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography and Paleoclimatology, 15, 280–291.

    Article  Google Scholar 

  • Myers, K.J. & Wignall, P.B. (1987). Understanding Jurassic organic-rich mudrocks—new concepts using Gamma-ray Spectrometry and Palaeoecology: examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire, (pp. 172–189) Marine Clastic Sedimentology, Grahm & Trotman, (ISBN: 978-94-009-3241-8)

  • Pang, X., Li, M., Li, S., & Jin, Z. (2003). Geochemistry of petroleum systems in the Niuzhuang South Slope of Bohai Bay Basin. Part 2: Evidence for significant contribution of mature source rocks to “immature oils” in the Bamianhe field. Organic Geochemistry, 34, 931–950.

    Article  Google Scholar 

  • Pang, Z. L., Zou, C. N., Tao, S. Z., Yang, Z., & Wu, S. T. (2012). Formation, distribution and resource evaluation of tight oil in China. Engineering Science, 14, 60–67. (in Chinese with English abstract).

    Google Scholar 

  • Paytan, A. (1996). Glacial to interglacial fluctuations in productivity in the equatorial pacific as indicated by Marine Barite. Science, 274(5291), 1355–1357.

    Article  Google Scholar 

  • Perdue, E. M., & Koprivnjak, J. F. (2007). Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments. Estuarine Coastal and Shelf Science, 73, 65–72.

    Article  Google Scholar 

  • Peters, K.E. & Moldowan, J.M. (1993). The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments (363 p.). Prentice Hall, New Jersey, (ISBN: 0130867527)

  • Piper, D. Z., & Perkins, R. B. (2004). A modern vs. Permian black shale—the hydrography, primary productivity, and water-column chemistry of deposition. Chemical Geology, 206, 177–197.

    Article  Google Scholar 

  • Powell, T. G. (1986). Petroleum geochemistry and depositional setting of lacustrine source rocks. Marine and Petroleum Geology, 3, 200–219.

    Article  Google Scholar 

  • Powell, T. G., & Mckirdy, D. M. (1973). Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia. Nature Physical Science, 243, 37–39.

    Article  Google Scholar 

  • Ren, Z. L., Zhang, S., Gao, S. L., Cui, J. P., & Xiao, Y. Y. (2007). Tectonic thermal history and its significance on the formation of oil and gas accumulation and mineral deposit in Ordos Basin. Science in China, 50(2 Supplement), 27–38.

    Article  Google Scholar 

  • Rimmer, S. M. (2004). Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian Basin (USA). Chemical Geology, 206, 373–391.

    Article  Google Scholar 

  • Rimmer, S. M., Thompson, J. A., Goodnight, S. A., & Robl, T. L. (2004). Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215, 125–154.

    Article  Google Scholar 

  • Sageman, B. B., Murphy, A. E., Werne, J. P., Ver Straeten, C. A., Hollander, D. J., & Lyons, T. W. (2003). A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin. Chemical Geology, 195, 229–273.

    Article  Google Scholar 

  • Schlanger, S. O., & Jenkyns, H. C. (1976). Cretaceous Oceanic Anoxic Events: Causes and consequences. Geologie En Mijnbouw, 55, 179–184.

    Google Scholar 

  • Schoepfer, S. D., Henderson, C. M., Garrison, G. H., Foriel, J., Ward, P. D., Selby, D., Hower, J. C., Algeo, T. J., & Shen, Y. (2013). Termination of a continent-margin upwelling system at the Permian-Triassic boundary (Opal Creek, Alberta, Canada)[J]. Global & Planetary Change, 105, 21–35.

    Article  Google Scholar 

  • Seifert, W. K., & Moldowan, J. M. (1981). Paleoreconstruction by biological markers. Geochimica et Cosmochimica Acta, 45, 783–794.

    Article  Google Scholar 

  • Shen, J., Chen, J., Algeo, T. J., Feng, Q., Yu, J., Xu, Y. G., Xu, G., Lei, Y., Planavsky, N. J., & Xie, S. (2021). Mercury fluxes record regional volcanism in the South China craton prior to the end-Permian mass extinction. Geology, 49, 452–456.

    Article  Google Scholar 

  • Shen, J., Schoepfer, S. D., Feng, Q., Zhou, L., Yu, J., Song, H., Wei, H., & Algeo, T. J. (2015). Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth-Science Reviews, 149, 136–162.

    Article  Google Scholar 

  • Singh, A. K., & Kumar, A. (2020). Assessment of thermal maturity, source rock potential and Paleodepositional environment of the Paleogene Lignites in Barsingsar, Bikaner-Nagaur Basin, Western Rajasthan, India. Natural Resources Research, 29, 1283–1305.

    Article  Google Scholar 

  • Summons, R. E., Powell, T. G., & Boreham, C. J. (1988). Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. composition of extractable hydrocarbons. Geochimica Et Cosmochimica Acta, 52, 1747–1763.

    Article  Google Scholar 

  • Sun, X., Liang, Q. S., Jiang, C. F., Enriquez, D., Zhang, T. W., & Hackley, P. (2017). Liquid hydrocarbon characterization of the lacustrine Yanchang Formation, Ordos Basin, China: Organic-matter source variation and thermal maturity. Interpretation, 5, 225–242.

    Article  Google Scholar 

  • Tao, H., Pang, X., Shu, J., Wang, Q., & Hui, L. (2018). Oil content evaluation of lacustrine organic-rich shale with strong heterogeneity: A case study of the Middle Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin, NW China. Fuel, 221, 196–205.

    Article  Google Scholar 

  • Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232, 12–32.

    Article  Google Scholar 

  • Tyson, R. V., & Pearson, T. H. (1991). Modern and ancient continental shelf anoxia: An overview. Arctic and Alpine Research, 58, 1–24.

    Google Scholar 

  • Wang, S. M. (2011). Ordos basin tectonic evolution and structural control of coal. Geological Bulletin of China, 30, 544–552.

    Google Scholar 

  • Wang, Z., Wang, J., Fu, X., Zhan, W., Armstrong-Altrin, J. S., Yu, F., Feng, X., Song, C., & Zeng, S. (2018). Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin, Tibet: implications for paleoenvironment, provenance, and tectonic setting. Journal of Asian Earth Sciences, 160, 118–135.

    Article  Google Scholar 

  • Wei, W., & Algeo, T. J. (2020). Secular variation in the elemental composition of marine shales since 840 Ma: Tectonic and seawater influences. Geochimica et Cosmochimica Acta, 287(1365), 367–390.

    Article  Google Scholar 

  • Wignall, P. B., & Twitchett, R. J. (1996). Oceanic anoxia and the end Permian mass extinction. Science, 272, 1155–1158.

    Article  Google Scholar 

  • Yan, D., Wang, H., Fu, Q., et al. (2015). Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: Implications for organic matter accumulation[J]. Marine & Petroleum Geology, 65, 290–301.

    Article  Google Scholar 

  • Yang, F., Chen, G., Kang, Y., et al. (2020). Late Ordovician provenance and depositional setting in the southwestern Ordos Block, China: Constraints from zircon U-Pb geochronology. Geosciences Journal, 24, 121–139.

    Article  Google Scholar 

  • Yu, Y., Li, Y., Guo, Z., & Zou, H. (2016). Distribution and sources of n-alkanes in surface sediments of Taihu lake, china. Archives of Environmental Protection, 42, 49–55.

    Article  Google Scholar 

  • Zhang, L., Sun, M., Wang, S., & Yu, X. (1998). The composition of shales from the Ordos basin, China: Effects of source weathering and diagenesis. Sedimentary Geology, 116, 129–141.

    Article  Google Scholar 

  • Zhang, W., Yang, H., & Peng, P. (2009). The influence of late triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin. Geochimica (Beijing), 38, 573–582. (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgments

This paper is financially supported by Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology Program (Oil and gas retention of Chang-7 shale system in Yan'an Area) and Shaanxi Province Science and Technology Department Project (Rock combination within shale system and its influence on shale oil migration).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojiang Fan.

Ethics declarations

Conflict of Interest

The author declares no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, B. Geochemical Characteristics and Paleoenvironment of Organic-Rich Triassic Shale in the Central Ordos Basin. Nat Resour Res 31, 1739–1757 (2022). https://doi.org/10.1007/s11053-022-10068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10068-1

Keywords

  • Paleoenvironment
  • Geochemical characteristics
  • Organic-rich shale
  • Yanchang formation
  • Central ordos basin