Skip to main content

Physical Properties, Pore-Throat Structure, Fractal Characteristics and Their Effects on the Gas-Bearing Capacity of Tight Sandstone: A Case Study from the Northern Tianhuan Depression, Ordos Basin, China

Abstract

In this study, various testing methods were used to analyze the mineral characteristics, reservoir storage types and pore-throat network characteristics of the Permian tight sandstone in the Upper Paleozoic of the Ordos Basin. A fractal method was applied to evaluate the reservoirs’ microscopic heterogeneity. According to the results, the storage space of the sandstone reservoir is predominantly intra-granular dissolution pores and kaolinite inter-crystalline pores, while primary pores and inter-granular dissolution pores form secondary spaces with low concentration and poor homogeneity of pore-throat size distribution. All samples were divided into four categories on account of porosity (ϕ), pore-throat size distribution and multifractal dimensions (D): Type A (ϕ > 10%) consisted mainly of macropores; Type B (ϕ < 6%, consisting mainly of transitional pores and micropores); Type C1 (6% < ϕ < 10%, consisting mainly of mesopores, D > 2.45); and Type C2 (6% < ϕ < 10%, consisting mainly of mesopores, D < 2.45). In general, the piecewise fractal dimension was associated with porosity, different pore size ranges and the pore-throat parameters. Between Types A and B samples, porosity and pore size distribution were the major controlling factors on gas-bearing capacity, while the microscopic pore-throat heterogeneity had little influence. However, the microscopic pore-throat heterogeneity had a significant effect on gas-bearing capacity in Types C1 and C2 samples. This study discusses the applicable pore size range for fractal analysis of tight sandstone based on fine reservoir division and provides a novel idea for the control of the microscopic pore-throat heterogeneity on gas-bearing capacity in tight sandstone.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Notes

  1. * 1 mD = 1 millidarcy = 0.986923 × 10−15 m2.

  2. * 1 psi = 6.89476 kPa.

References

  • Broseta, D., Barré, L., Vizika, O., Shahidzadeh, N., Guilbaud, J. P., & Lyonnard, S. (2001). Capillary condensation in a fractal porous medium. Physical Review Letters, 86(23), 5313–5316.

    Article  Google Scholar 

  • Bu, H. L., Ju, Y. W., Tan, J. Q., Wang, G. C., & Li, X. S. (2015). Fractal characteristics of pores in non-marine shales from the Huainan Coalfield, Eastern China. Journal of Natural Gas Science & Engineering, 24, 166–177.

    Article  Google Scholar 

  • Cai, J. C., Yu, B. M., Zou, M. Q., & Mei, M. F. (2010). Fractal analysis of invasion depth of extraneous fluids in porous media. Chemical Engineering Science, 65(18), 5178–5186.

    Article  Google Scholar 

  • Corrado, S., Aldega, L., Celano, A. S., Benedetti, A. A. D., & Giordano, G. (2014). Cap rock efficiency and fluid circulation of natural hydrothermal systems by means of XRD on clay minerals (Sutri, Northern Latium, Italy). Geothermics, 50, 180–188.

    Article  Google Scholar 

  • De Ros, L. F. (1998). Heterogeneous generation and evolution of diagenetic quartz arenites in the Silurian-Devonian Furnas Formation of the Paraná’ Basin, southern Brazil. Sedimentary Geology, 116, 99–128.

    Article  Google Scholar 

  • Dong, T., Harris, N. B., Ayranci, K., Twemlow, C. E., & Nassichuk, B. R. (2017). The impact of composition on pore throat size and permeability in high maturity shales: Middle and Upper Devonian Horn River Group, northeastern British Columbia, Canada. Marine and Petroleum Geology, 81, 220–236.

    Article  Google Scholar 

  • Ehrenberg, S. N. (1991). Kaolinized, potassium-leached zones at the contacts of the Garn Formation, Haltenbanken, mid-Norwegian continental shelf. Marine and Petroleum Geology, 8, 250–269.

    Article  Google Scholar 

  • Folk, R. L. (1974). Petrology of Sedimentary Rocks (p. 184). Hemphill Publishing.

    Google Scholar 

  • Hanson, A. D., Ritts, B. D., & Moldowan, J. M. (2007). Organic geochemistry of oil and source rock strata of the Ordos Basin, north-central China. AAPG Bulletin, 91(9), 1273–1293.

    Article  Google Scholar 

  • Huang, W. B., Lu, S. F., Hersi, O. S., Wang, M., Deng, S. W., & Lu, R. J. (2017). Reservoir spaces in tight sandstones: Classification, fractal characters, and heterogeneity. Journal of Natural Gas Science and Engineering, 46, 80–92.

    Article  Google Scholar 

  • Hurst, A., & Nadeau, H. P. (1995). Clay microporosity in reservoir sandstones: An application of quantitative electron microscopy in petrophysical evaluation. AAPG Bulletin., 79(4), 563–573.

    Google Scholar 

  • Jia, C. Z., Zheng, M., & Zhang, Y. F. (2012). Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petroleum Exploration and Development., 39(2), 139–146.

    Article  Google Scholar 

  • Jiang, Z. X., Lin, S. G., Pang, X. Q., & Wang, J. (2006). The comparison of two types of tight sand gas reservoir. Petroleum Exploration and Development, 03, 210-214+219. (in Chinese with English abstract).

    Google Scholar 

  • Lai, J., Wang, G. W., Wang, Z. Y., Chen, J., Pang, X. J., Wang, S. C., Zhou, Z. L., He, Z. B., Qin, Z. Q., & Fan, X. Q. (2018). A review on pore structure characterization in tight sandstones. Earth-Science Reviews, 177, 436–457.

    Article  Google Scholar 

  • Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabère, A., & Meunier, A. (2002). Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: A review. Clay Minerals, 37(1), 1–22.

    Article  Google Scholar 

  • Li, H. Y., Yue, D. L., & Zhang, X. J. (2012). Characteristics of pore structure and reservoir evaluation of low permeability reservoir in Sulige gas field. Earth Science Frontiers, 19(2), 133–140.

    Google Scholar 

  • Li, J., Zhang, W. Z., Luo, X., & Hu, G. Y. (2008). Paleokarst reservoirs and gas accumulation in the Jingbian field, Ordos Basin. Marine and Petroleum Geology, 25(4), 401–415.

    Article  Google Scholar 

  • Li, P., Zheng, M., Bi, H., Wu, S. T., & Wang, X. R. (2017). Pore throat structure and fractal characteristics of tight oil sandstone: A case study in the Ordos Basin, China. Journal of Petroleum Science and Engineering, 149, 665–674.

    Article  Google Scholar 

  • Li, Y., Chang, X. C., Yin, W., Wang, G. W., Zhang, J. L., Shi, B. B., Zhang, J. H., & Mao, L. X. (2019). Quantitative identification of diagenetic facies and controls on reservoir quality for tight sandstones: A case study of the Triassic Chang 9 oil layer, Zhenjing area, Ordos Basin. Marine and Petroleum Geology, 102, 680–694.

    Article  Google Scholar 

  • Mandelbrot, B. B., Passoja, D. E., & Paullay, A. J. (1984). Fractal character of fracture surfaces of metals. Nature, 308, 721–722.

    Article  Google Scholar 

  • Mantovani, M., Escudero, A., & Becerro, A. I. (2010). Effect of pressure on kaolinite illitization. Applied Clay Science, 50(3), 342–347.

    Article  Google Scholar 

  • Martín-Martín, J. D., Gómez-Gras, D., Sanfeliu, T., Permanyer, A., Núñez, J. A., & Parcerisa, D. (2005). Conditions of kaolin illitization in the Permo-Triassic sandstones from the SE Iberian Ranges, Spain. Journal of Geochemical Exploration, 89(1), 263–266.

    Google Scholar 

  • Mcglade, C. E., Speirs, J., & Sorrell, S. (2013). Unconventional gas-a review of regional and global resource estimates. Energy, 55, 571–584.

    Article  Google Scholar 

  • Morad, S., Al-Ramadan, K., Ketzer, J. M., & De Ros, L. F. (2010). The impact of diagenesis on the heterogeneity of sandstone reservoirs: A review of the role of depositional facies and sequence stratigraphy. AAPG Bulletin, 94(8), 1267–1309.

    Article  Google Scholar 

  • Nie, R. S., Wang, Z., Chen, Z. X., Wang, A. C., Zhou, C. H., Lei, J. Y., & Pan, Y. (2021). Stress-sensitive permeability of matrix cores and artificially fractured cores with non-proppant-filled fractures under high-pressure conditions. Geophysics, 86(3), 1–102.

    Article  Google Scholar 

  • Nie, R. S., Xie, F., Jia, Y. L., Jiang, K. J., Kuang, X. D., He, X. L., & Dai, L. (2016). Experimental study on the pressure-depleted flow of natural gas in a cluster of combined tight cores with a certain water saturation. Journal of Natural Gas Science & Engineering, 33, 821–829.

    Article  Google Scholar 

  • Ougier-Simonin, A., Renard, F., Boehm, C., & Vidal-Gilbert, S. (2016). Microfracturing and microporosity in shales. Earth-Science Reviews, 162, 198–226.

    Article  Google Scholar 

  • Pfeifer, P. (1984). Fractal dimension as working tool for surface-roughness problems. Applications of Surface Science, 18(1–2), 146–164.

    Article  Google Scholar 

  • Qiao, J. C., Zeng, J. H., Jiang, S., Feng, S., Feng, X., Guo, Z., & Teng, J. L. (2019). Heterogeneity of reservoir quality and gas accumulation in tight sandstone reservoirs revealed by pore structure characterization and physical simulation. Fuel, 253, 1300–1316.

    Article  Google Scholar 

  • Schlueter, E. M., Zimmerman, R. W., Witherspoon, P. A., & Cook, N. G. W. (1997). The fractal dimension of pores in sedimentary rocks and its influence on permeability. Engineering Geology, 48(3), 199–215.

    Article  Google Scholar 

  • Shanley, K. W., Cluff, R. M., & Robinson, J. W. (2004). Factors controlling prolific gas production from low-permeability sandstone reservoirs: Implications for resource assessment, prospect development, and risk analysis. AAPG Bulletin, 88(8), 1083–1121.

    Article  Google Scholar 

  • Shanley, K. W., & Cluff, R. M. (2015). The evolution of pore-scale fluid-saturation in low-permeability sandstone reservoirs. AAPG Bulletin, 99(10), 1957–1990.

    Article  Google Scholar 

  • Sun, W. J. B., Zuo, Y. J., Wu, Z. G., Liu, H., Xi, S. J., Shui, Y., Wang, J., Liu, R. B., & Lin, J. Y. (2019). Fractal analysis of pores and the pore structure of the Lower Cambrian Niutitang shale in northern Guizhou province: Investigations using NMR, SEM and image analyses. Marine and Petroleum Geology, 99, 416–428.

    Article  Google Scholar 

  • Wang, M., Tang, H. M., Zhao, F., Liu, S., Yang, Y., Zhang, L. H., Liao, J. J., & Lu, H. (2017). Controlling factor analysis and prediction of the quality of tight sandstone reservoirs: A case study of the He8 Member in the eastern Sulige Gas Field, Ordos Basin, China. Journal of Natural Gas Science & Engineering, 46, 680–698.

    Article  Google Scholar 

  • Washburn, E. W. (1921). The dynamics of capillary flow. The Physical Review, 17, 273–283.

    Article  Google Scholar 

  • Wu, J., Fan, T. L., Rivas, E. G., Gao, Z. Q., Yao, S. Q., Li, W. H., Zhang, C. J., Sun, Q. Q., Gu, Y., & Xiang, M. (2019). Impact of pore structure and fractal characteristics on the sealing capacity of Ordovician carbonate cap rock in the Tarim Basin, China. Marine and Petroleum Geology, 102, 557–579.

    Article  Google Scholar 

  • Xoaoth, B. B. (1966). Coal and gas outburst. In S. Song & Y. Wang (Eds.), Translation. Beijing: China Industry Press.

    Google Scholar 

  • Yang, R., He, S., Yi, J. Z., & Hu, Q. H. (2016). Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry. Marine and Petroleum Geology, 70, 27–45.

    Article  Google Scholar 

  • Zha, M., Wang, S., Ding, X. J., Feng, Q. H., Xue, H. T., & Su, Y. (2018). Tight oil accumulation mechanisms of the Lucaogou Formation in the Jimsar Sag, NW China: Insights from pore network modeling and physical experiments. Journal of Asian Earth Sciences, 178, 204–215.

    Article  Google Scholar 

  • Zhang, F. D., Li, J., Li, J., Yang, S., She, Y. Q., Shao, L. Y., Guan, H., Zhu, Q. Y., & Guo, J. Y. (2017). Accumulation mechanism of tight sandstone gas in low gas generation intensity area. Journal of Natural Gas Geoscience, 2(2), 131–140.

    Article  Google Scholar 

  • Zhou, Y., Ji, Y. L., Xu, L. M., Che, S. Q., Niu, X. B., Wan, L., Zhou, Y. Q., Li, Z. C., & You, Y. (2016). Controls on reservoir heterogeneity of tight sand oil reservoirs in Upper Triassic Yanchang Formation in Longdong area, southwest Ordos Basin, China: Implications for reservoir quality prediction and oil accumulation. Marine and Petroleum Geology, 78, 110–135.

    Article  Google Scholar 

  • Zhu, F., Hu, W. X., Cao, J., Sun, F. N., Liu, Y. F., & Sun, Z. M. (2018). Micro/nanoscale pore structure and fractal characteristics of tight gas sandstone: A case study from the Yuanba area, northeast Sichuan Basin, China. Marine and Petroleum Geology, 98, 116–132.

    Article  Google Scholar 

  • Zhu, S. F., Wang, X. X., Qin, Y., Jia, Y., Zhu, X. M., Zhang, J. T., & Hu, Y. Q. (2017). Occurrence and origin of pore-lining chlorite and its effectiveness on preserving porosity in sandstone of the middle Yanchang Formation in the southwest Ordos Basin. Applied Clay Science, 148, 25–38.

    Article  Google Scholar 

  • Zhu, S. F., Zhu, X. M., Jia, Y., Cui, H., & Wang, W. Y. (2020). Diagenetic alteration, pore-throat network, and reservoir quality of tight gas sandstone reservoirs: A case study of the upper Paleozoic sequence in the northern Tianhuan depression in the Ordos Basin, China. AAPG Bulletin, 104(11), 2297–2324.

    Article  Google Scholar 

  • Zou, C. N., Yang, Z., Tao, S. Z., Yuan, X. J., Zhu, R. K., Hou, L. H., Wu, S. T., Sun, L., Zhang, G. S., Bai, B., Wang, L., Gao, Z. L., & Pang, Z. L. (2013). Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum: The Ordos Basin, North-Central China. Earth-Science Reviews, 126, 358–369.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41872102; 41202107). We thank PetroChina Changqing Oilfield Company for permission to use industry data for this research. Thanks are also extended to the reviewers for their valuable comments and constructive modifications that greatly enhanced the manuscript. We are grateful to chief Editor John Carranza and two anonymous reviewers for their valuable comments and suggestions, which contributed to the improvement of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifa Zhu.

Ethics declarations

Conflict of Interest

We declare that we do not have any conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Zhu, S., Wang, J. et al. Physical Properties, Pore-Throat Structure, Fractal Characteristics and Their Effects on the Gas-Bearing Capacity of Tight Sandstone: A Case Study from the Northern Tianhuan Depression, Ordos Basin, China. Nat Resour Res 31, 1559–1584 (2022). https://doi.org/10.1007/s11053-022-10059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10059-2

Keywords

  • Microscopic heterogeneity
  • Fractal dimension
  • Physical properties
  • Gas-bearing capacity
  • Tight gas sandstone