Skip to main content
Log in

Modeling the Uncertainty in the Layout of Geological Units by Implicit Boundary Simulation Accounting for a Preexisting Interpretive Geological Model

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

An implicit simulation algorithm that uses signed distance functions is proposed to represent subsurface geological configuration while accounting for two sources of information: drillhole data considered as ‘hard’ (error-free) information and a preexisting interpretive geological model viewed as ‘soft’ information. The proposed algorithm follows a hierarchical workflow and relies on the calculation of the down-the-hole distance between every drillhole data and the closest geological boundary (primary variable) together with the omnidirectional distance between each node of the interpretive model and the closest boundary (covariate). The level of influence of the latter on the former can be controlled by tuning their cross-correlation so that one can increase or reduce the effect of the geological interpretation in the simulation, depending on the confidence of the expert in such an interpretation. The key parameters for a successful implementation of the proposed approach are the choice of a binary tree to control the topological relationships between the simulated geological units, of a spatial correlation model to control the geological continuity and the boundaries regularity, and of a coefficient to control the trustworthiness given to the soft data. The specification of these parameters can be assessed by geological considerations and by cross-validation techniques. The proposal was applied to a synthetic and a real case study, where it was shown that incorporation of soft data allowed reproduction of geological zonations in areas with few drillhole data. Some implementation issues and possible improvements to the method are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Modified from Maleki et al., (2016)

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

modified from Duhart et al., 2018). The main lithologic units are the wall rocks unit (JKiss-Ksqm), copper porphyries (Pai(b1)), alluvial and colluvial deposits (PlHac) and anthropic deposit (Han)

Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Alabert, F. (1987). Stochastic imaging of spatial distributions using hard and soft information. MSc. dissertation, Stanford University.

  • Amarante, F. A. N., Rolo, R. M., & Coimbra Leite Costa, J. F. (2021). Boundary simulation-a hierarchical approach for multiple categories. Applied Earth Science: Transactions of the Institute of Mining and Metallurgy, 130(2), 114–130.

    Article  Google Scholar 

  • Armstrong, M., Galli, A., Beucher, H., Loc’h, G., Renard, D., Doligez, B., Eschard, R., & Geffroy, F. (2011). Plurigaussian simulations in geosciences. Springer.

    Book  Google Scholar 

  • Aug, C., Chilès, J. P., Courrioux, G., & Lajaunie, C. (2005). 3D geological modelling and uncertainty: The potential-field method. In O. Leuangthong & C. V. Deutsch (Eds.), Geostatistics Banff 2004 (pp. 145–154). Springer.

    Chapter  Google Scholar 

  • Benito Garcia-Morales, M., Beucher, H., Geffroy, F., & Doligez, B. (2003). Object-based simulations in fluvial environment at the reservoir scale and at a local scale. In: Proceedings of the AAPG annual convention. Salt Lake City, Utah. AAPG Search and Discovery Article #90013, 7 p.

  • Berry, M., & McCarthy, P. (2006). Practical consequences of geological uncertainty. In: Proceedings of the 6th international mining geology conference (pp. 253–258). The Australasian Institute of Mining and Metallurgy.

  • Beucher, H., Galli, A., Le Loch, G., & Ravenne, C. (1993). Including a regional trend in reservoir modelling using the truncated Gaussian method. In A. Soares (Ed.), Geostatistics Tróia’92 (pp. 555–566). Springer.

    Chapter  Google Scholar 

  • Beucher, H., García-Morales, M., & Geffroy, F. (2005). Fitting the Boolean parameters in a non-stationary case. In O. Leuangthong & C. V. Deutsch (Eds.), Geostatistics Banff 2004 (pp. 569–578). Springer.

    Chapter  Google Scholar 

  • Boric, R., Díaz, F., & Maksaev, V. (1990). Geología y yacimientos metalíferos de la Región de Antofagasta. Servicio Nacional de Geología y Minería, Boletín No. 40, 246 p.

  • Bunker, E., Blundy, J., Cooper, F., Condon, D., & Tapster, S. (2017). Textural, spatial and temporal variation within the igneous suites of the Spence porphyry copper deposit, northern Chile. Applied Earth Science, 126(2), 47–48.

    Article  Google Scholar 

  • Cáceres, A., Emery, X., Aedo, L., & Gálvez, O. (2011). Stochastic geological modeling using implicit boundary simulation. In J. Beniscelli, R. Kuyvenhoven, & K. O. Hoal (Eds.), Proceedings of the 2nd international seminar on geology for the mining industry. Gecamin Ltd.

    Google Scholar 

  • Calcagno, P., Chilès, J. P., Courrioux, G., & Guillen, A. (2008). Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules. Physics of the Earth and Planetary Interiors, 171, 147–157.

    Article  Google Scholar 

  • Carle, S. F., & Fogg, G. E. (1997). Modeling spatial variability with one and multidimensional continuous-lag Markov chains. Mathematical Geology, 29(7), 891–918.

    Article  Google Scholar 

  • Carle, S. F., & Fogg, G. E. (2020). Integration of soft data into geostatistical simulation of categorical variables. Frontiers in Earth Science, 8, 449.

    Article  Google Scholar 

  • Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., & Evans, T. R. (2001). Reconstruction and representation of 3D objects with radial basis functions. In L. Pocock (Ed.), Proceedings of the 28th annual conference on computer graphics and interactive techniques (pp. 67–76). Association for Computing Machinery.

    Chapter  Google Scholar 

  • Caumon, G., Gray, G., Antoine, C., & Titeux, M. O. (2013). Three-dimensional implicit stratigraphic model building from remote sensing data on tetrahedral meshes: Theory and application to a regional model of La Popa Basin, NE Mexico. IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1613–1621.

    Article  Google Scholar 

  • Chilès, J. P., Aug, C., Guillen, A., & Lees, T. (2004). Modelling the geometry of geological units and its uncertainty in 3D from structural data: The potential-field method. In R. Dimitrakopoulos & S. Ramazan (Eds.), Orebody modelling and strategic mine planning (pp. 313–320). The Australasian Institute of Mining and Metallurgy.

    Google Scholar 

  • Chilès, J. P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty. Wiley.

    Book  Google Scholar 

  • Cowan, M. W., Beatson, R. K., Ross, H. J., Fright, W. R., McLennan, T. J., Evans, T. R., Carr, J. C., Lane, R. G., Bright, D. V., Gillman, A. J., Oshurst, P. A., & Titley, M. (2003). Practical implicit geological modelling. In S. Dominy (Ed.), Proceedingsofthe AusIMM 5th international mining geology conference (pp. 89–99). Australasian Institute of Mining and Metallurgy.

    Google Scholar 

  • de la Varga, M., Schaaf, A., & Wellmann, F. (2019). GemPy 10: Open-source stochastic geological modeling and inversion. Geoscientific Model Development, 12(1), 1–32.

    Article  Google Scholar 

  • Deutsch, C. V. (2006). A sequential indicator simulation program for categorical variables with point and block data: BlockSIS. Computers & Geosciences, 32(10), 1669–1681.

    Article  Google Scholar 

  • Deutsch, C. V., & McLennan, J. A. (2007). BOUNDSIM: Implicit boundary modeling. In E. J. Magri (Ed.), Proceedingsofthe 33rd international symposium on applications of computers and operations research in the mineral industry (pp. 41–48). Gecamin Ltd.

    Google Scholar 

  • Dubrule, O. (1993). Introducing more geology in stochastic reservoir modelling. In A. Soares (Ed.), Geostatistics Tróia’ 92 (pp. 351–369). Springer.

    Chapter  Google Scholar 

  • Duhart, P., Muñoz, J., Quiroz, D., Mestre, A., & Varas, G. (2018). Carta Sierra Gorda, Región de Antofagasta. Servicio Nacional de Geología y Minería, Serie Geológica Básica No. 198, 1 mapa escala 1:100.000. Santiago.

  • Emery, X. (2004). Properties and limitations of sequential indicator simulation. Stochastic Environmental Research and Risk Assessment, 18(6), 414–424.

    Article  Google Scholar 

  • Emery, X. (2007). Simulation of geological domains using the plurigaussian model: New developments and computer programs. Computers and Geosciences, 33(9), 1189–1201.

    Article  Google Scholar 

  • Emery, X. (2012). Cokriging random fields with means related by known linear combinations. Computers & Geosciences, 38(1), 136–144.

    Article  Google Scholar 

  • Emery, X., Arroyo, D., & Porcu, E. (2016). An improved spectral turning-bands algorithm for simulating stationary vector Gaussian random fields. Stochastic Environmental Research and Risk Assessment, 30(7), 1863–1873.

    Article  Google Scholar 

  • Emery, X., & Lantuéjoul, C. (2011). Geometric covariograms, indicator variograms and boundaries of planar closed sets. Mathematical Geosciences, 43(8), 905–927.

    Article  Google Scholar 

  • Emery, X., & Maleki, M. (2019). Geostatistics in the presence of geological boundaries: Application to mineral resources modeling. Ore Geology Reviews, 114, 103124.

    Article  Google Scholar 

  • Emery, X., & Robles, L. N. (2009). Simulation of mineral grades with hard and soft conditioning data: Application to a porphyry copper deposit. Computational Geosciences, 13(1), 79–89.

    Article  Google Scholar 

  • Emery, X., & Séguret, S. A. (2020). Geostatistics for the mining industry—Applications to porphyry copper deposits. CRC Press.

    Book  Google Scholar 

  • Gonçalves, Í. G., Kumaira, S., & Guadagnin, F. (2017). A machine learning approach to the potential-field method for implicit modeling of geological structures. Computers & Geosciences, 103, 173–182.

    Article  Google Scholar 

  • Henrion, V., Caumon, G., & Cherpeau, N. (2010). ODSIM: An object-distance simulation method for conditioning complex natural structures. Mathematical Geosciences, 42(8), 911–924.

    Article  Google Scholar 

  • Hillier, M. J., Schetselaar, E. M., de Kemp, E. A., & Perron, G. (2014). Three-dimensional modelling of geological surfaces using generalized interpolation with radial basis functions. Mathematical Geosciences, 46(8), 931–953.

    Article  Google Scholar 

  • Høyer, A. S., Vignoli, G., Hansen, T. M., Vu, L. T., Keefer, D. A., & Jørgensen, F. (2017). Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies. Hydrology and Earth System Sciences, 21(12), 6069–6089.

    Article  Google Scholar 

  • Jessell, M. W., Ailleres, L., & de Kemp, E. A. (2010). Towards an integrated inversion of geoscientific data: What price of geology? Tectonophysics, 490, 294–306.

    Article  Google Scholar 

  • Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. Academic Press.

    Google Scholar 

  • Journel, A. G., & Rossi, M. E. (1989). When do we need a trend model in kriging? Mathematical Geology, 21(7), 715–739.

    Article  Google Scholar 

  • Koch, J., He, X., Jensen, K. H., & Refsgaard, J. C. (2014). Challenges in conditioning a stochastic geological model of a heterogeneous glacial aquifer to a comprehensive soft data set. Hydrology and Earth System Sciences, 18(8), 2907–2923.

    Article  Google Scholar 

  • Lajaunie, C., Courrioux, G., & Manuel, L. (1997). Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation. Mathematical Geology, 29(4), 571–584.

    Article  Google Scholar 

  • Lantuéjoul, C. (2002). Geostatistical simulation: Models and algorithms. Springer.

    Book  Google Scholar 

  • Li, S. X., Knights, P., & Dunn, D. (2008). Geological uncertainty and risk: Implications for the viability of mining projects. Journal of Coal Science and Engineering, 14(2), 176–180.

    Article  Google Scholar 

  • Madani, N., & Emery, X. (2015). Simulation of geo-domains accounting for chronology and contact relationships: Application to the Río Blanco copper deposit. Stochastic Environmental Research and Risk Assessment, 29(8), 2173–2191.

    Article  Google Scholar 

  • Madani, N., & Emery, X. (2019). A comparison of search strategies to design the cokriging neighborhood for predicting coregionalized variables. Stochastic Environmental Research and Risk Assessment, 33(1), 183–199.

    Article  Google Scholar 

  • Maleki, M., Emery, X., Cáceres, A., Ribeiro, D., & Cunha, E. (2016). Quantifying the uncertainty in the spatial layout of rock type domains in an iron ore deposit. Computational Geosciences, 20(5), 1013–1028.

    Article  Google Scholar 

  • Maleki, M., Jélvez, E., Emery, X., & Morales, M. (2020). Stochastic open-pit mine production scheduling: A case study of an iron deposit. Minerals, 10(7), 585.

    Article  Google Scholar 

  • Maleki-Tehrani, M. A., Asghari, O., & Emery, X. (2013). Simulation of mineral grades and classification of mineral resources by using hard and soft conditioning data: Application to Sungun porphyry copper deposit. Arabian Journal of Geosciences, 6(10), 3773–3781.

    Article  Google Scholar 

  • Mallet, J. L. (2002). Geomodeling. Oxford University Press.

    Google Scholar 

  • Manchuk, J. G., & Deutsch, C. V. (2019). Boundary modeling with moving least squares. Computers & Geosciences, 126, 96–106.

    Article  Google Scholar 

  • Mariethoz, G., & Caers, J. (2014). Multiple-point geostatistics: Stochastic modeling with training images. Wiley.

    Book  Google Scholar 

  • Matheron, G., Beucher, H., de Fouquet, C., Galli, A., Guerillot, D., & Ravenne, C. (1987). Conditional simulation of the geometry of fluvio-deltaic reservoirs. In 62nd annual technical conference and exhibition of the society of petroleum engineers. Society of Petroleum Engineers, Dallas, SPE paper 16753.

  • Maxelon, M., Renard, P., Courrioux, G., Brändli, M., & Mancktelow, N. (2009). A workflow to facilitate three-dimensional geometrical modelling of complex poly-deformed geological units. Computers & Geosciences, 35, 644–658.

    Article  Google Scholar 

  • McCarthy, P. L. (2003). Managing technical risks for mine feasibility studies. In: Proceedings mining risk management conference (pp. 21–27). The Australasian Institute of Mining and Metallurgy.

  • Moreno, L., Sanhueza, A., Fajardo, J., Guzmán, R., Lagos, M., Nava, M., González, E., & Ruggiero, A. (2012). Mineralización Hipógena del Pórfido Paleoceno Spence. In A. H. Menzies & R. González (Eds.), Actas del XIII Congreso Geológico Chileno (pp. 31–33). Universidad Católica del Norte.

    Google Scholar 

  • Ravenne, C., Galli, A., Doligez, B., Beucher, H., & Eschard, R. (2002). Quantification of facies relationships via proportion curves. In M. Armstrong, C. Bettini, N. Champigny, A. Galli, & A. Remacre (Eds.), Geostatistics Rio 2000, Proceedings of the geostatistics sessions of the 31st international geological congress (pp. 19–39). Springer.

    Google Scholar 

  • Rivoirard, J. (2001). Which models for collocated cokriging? Mathematical Geology, 33(2), 117–131.

    Article  Google Scholar 

  • Rivoirard, J., Cojan, I., Renard, D., & Geffroy, F. (2008). Advances in quantification of process-based models for meandering channelized reservoirs. In J. M. Ortiz & X. Emery (Eds.), Proceedings of the VIIIth international geostatistics congress (pp. 607–616). Gecamin Ltd.

    Google Scholar 

  • Royer, J. J., Mejia, P., Caumon, G., & Collon, P. (2015). 3D and 4D geomodelling applied to mineral resources exploration—An introduction. In P. Weihed (Ed.), 3D, 4D and predictive modelling of major mineral belts in Europe (pp. 73–89). Springer.

    Chapter  Google Scholar 

  • Sánchez, L. K., Emery, X., & Séguret, S. A. (2019). 5D geostatistics for directional variables: Application in geotechnics to the simulation of the linear discontinuity frequency. Computers and Geosciences, 133, 104325.

    Article  Google Scholar 

  • Turk, G., & O’Brien, J. F. (2002). Modelling with implicit surfaces that interpolate. ACM Transactions on Graphics, 21(4), 855–873.

    Article  Google Scholar 

  • Vollgger, S. A., Cruden, A. R., Ailleres, L., & Cowan, E. J. (2015). Regional dome evolution and its control on ore-grade distribution: Insights from 3D implicit modelling of the Navachab gold deposit, Namibia. Ore Geology Reviews, 69, 268–284.

    Article  Google Scholar 

  • Wackernagel, H. (2003). Multivariate geostatistics. Springer.

    Book  Google Scholar 

  • Wellmann, J. F., Lindsay, M., Poh, J., & Jessell, M. (2014). Validating 3-D structural models with geological knowledge for improved uncertainty evaluations. Energy Procedia, 59, 374–381.

    Article  Google Scholar 

  • Wellmann, F., & Caumon, G. (2018). 3-D Structural geological models: Concepts, methods, and uncertainties. Advances in Geophysics, 59, 1–121.

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the National Agency for Research and Development of Chile (ANID), under Grant ANID PIA AFB180004 (R.F., X.E. and F.N.) and by BHP where the case studies were conducted. The authors acknowledge two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Maleki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer, R., Emery, X., Maleki, M. et al. Modeling the Uncertainty in the Layout of Geological Units by Implicit Boundary Simulation Accounting for a Preexisting Interpretive Geological Model. Nat Resour Res 30, 4123–4145 (2021). https://doi.org/10.1007/s11053-021-09964-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09964-9

Keywords

Navigation