Skip to main content

Advertisement

Log in

Spatially-Weighted Factor Analysis for Extraction of Source-Oriented Mineralization Feature in 3D Coordinates of Surface Geochemical Signal

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

This contribution proposes a spatially weighted factor analysis (SWFA) to recognize effectively the underlying mineralization-related feature(s) in geochemical signals. The 3D spatial properties of the sampled surficial earth materials provide the opportunity to orient the results toward the potential sources through defining the proper localization functions. Perceiving the hydrothermal alterations as mineralization-indicating vectors in geochemical systems, a weighting function integrates the distance to prospective alteration zones and the geometry of productive geo-objects into a monolith formulation to achieve the source-oriented results. A covariance matrix tuned by the system localization function reformulates the standard factor analysis (FA) model to manifest source-oriented mineralization factor(s). The established mathematical setting was adapted to the compositional nature of multi-elemental signals and implemented via a combination of programming in MATLAB platform and R packages. An experiment on a porphyry Cu deposit was subjected to the outlined procedure for performance appraisal and comparison with the FA. The results indicated that the use of a weighting function configures the permutation of eigenvalues in such a way as to reflect spatial zoning from proximal to distal signals while providing clearly interpretable eigenvectors for ore-forming elements. By amplifying the signal of interest and reducing the signal of uncalled-for geo-processes, SWFA modulates the frequency distribution and spatial continuity of the feature of interest in such a way that the continuous-value mineralization landscape is allowed to be more consistent with the subsurface metallogenic reality in the survey area. A receiver operating characteristic analysis was adopted to evaluate quantitatively the factorized signal in predicting the mineralized ground to narrow down on the target areas. The results revealed a significant spatial coincidence between the source-oriented metallogenic pattern and mineralization evidence, implying superiority over the model derived by standard FA. The suggested scheme holds potential to information as a more efficient basis for follow-up exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

source-oriented mineralization feature at the Kuh-Panj porphyry system, overlain by exploratory boreholes (top), as well as ore model plans at elevations 2810 m and 2630 m prepared by using the core drilling data (bottom)

Figure 12
Figure 13

Similar content being viewed by others

Data availability

The MATLAB-based program including the codes and tutorial commands that support the findings of SWFA proposed here was deposited in a GITHUB repository and is available at https://github.com/Saeid1986/SWFA. The R package compositions used here for compositional data analysis are available at https://cran.r-project.org/web/packages/compositions/index.html.

References

  • Afzal, P., Yasrebi, A. B., Saein, L. D., & Panahi, S. (2017). Prospecting of Ni mineralization based on geochemical exploration in Iran. Journal of Geochemical Exploration, 181, 294–304.

    Google Scholar 

  • Agresti, A., & Coull, B. A. (1998). Approximate is better than “exact” for interval estimation of binomial proportions. The American Statistician, 52(2), 119–126.

    Google Scholar 

  • Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (methodological), 44(2), 139–160.

    Google Scholar 

  • Aitchison, J. (1984). The statistical analysis of geochemical compositions. Journal of the International Association for Mathematical Geology, 16(6), 531–564.

    Google Scholar 

  • Ajayi, T. R. (1981). Statistical analysis of stream sediment data from the Ife-Ilesha area of southwest Nigeria. Journal of Geochemical Exploration, 15(1-3), 539–548.

    Google Scholar 

  • Apel, M. (2006). From 3d geomodelling systems towards 3d geoscience information systems: Data model, query functionality, and data management. Computers & Geosciences, 32(2), 222–229.

    Google Scholar 

  • Asadi, S., Moore, F., & Zarasvandi, A. (2014). Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: A review. Earth-Science Reviews, 138, 25–46.

    Google Scholar 

  • Ayalon, A., Bar-Matthews, M., & Nathan, Y. (1981). Geochemistry of stream sediments along the western coast of the Gulf of Elat (Aqaba). In Journal of Geochemical Exploration 15(1-3), 393–404.

    Google Scholar 

  • Baddeley, A. (2018). A statistical commentary on mineral prospectivity analysis. In Handbook of mathematical geosciences Springer.

  • Bailey, T. C., & Krzanowski, W. J. (2000). Extensions to spatial factor methods with an illustration in geochemistry. Mathematical Geology, 32(6), 657–682.

    Google Scholar 

  • Bakac, M. (2000). Factor analysis applied to a geochemical study of suspended sediments from the Gediz River, western Turkey. Environmental Geochemistry and Health, 22(2), 93–111.

    Google Scholar 

  • Bartlett, M. S. (1937). The statistical conception of mental factors. British Journal of Psychology, 28(1), 97.

    Google Scholar 

  • Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Statistical Psychology, 3(2), 77–85.

    Google Scholar 

  • Bartlett, M. S. (1951). A further note on tests of significance in factor analysis. British Journal of Statistical Psychology, 4(1), 1–2.

    Google Scholar 

  • Basilevsky, A. T. (2009). Statistical factor analysis and related methods: theory and applications (Vol. 418). Wiley.

    Google Scholar 

  • Beane, R. E. (1982). Hydrothermal alteration in silicate rocks. In Advances in geology of the porphyry copper deposits, southwestern North America University of Arizona Press, Tucson.

  • Berger, B. R., Ayuso, R. A., Wynn, J. C., & Seal, R. R. (2008). Preliminary model of porphyry copper deposits. US Geological Survey Open-File Report, 1321, 55.

    Google Scholar 

  • Berzina, A. N., Sotnikov, V. I., Economou-Eliopoulos, M., & Eliopoulos, D. G. (2005). Distribution of rhenium in molybdenite from porphyry Cu–Mo and Mo–Cu deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews, 26(1–2), 91–113.

    Google Scholar 

  • Beus, A. A., & Grigorian, S. V. (1977). Geochemical exploration methods for mineral deposits. Applied Publishing Ltd.

  • Blyth, C. R. (1972). On Simpson’s paradox and the sure-thing principle. Journal of the American Statistical Association, 67(338), 364–366.

    Google Scholar 

  • Bonham-Carter, G., & Cheng, Q. (2001). Spatially weighted principal component analysis. In Proceedings of the IAMG2001 meeting, Cancú n, Mexico.

  • Boogaart, K. G. van den, Tolosana-Delgado, R., & Bren, M. (2018). compositions: Compositional Data Analysis. R package version 1.40–2. R Foundation for Statistical Computing, Vienna. https://CRAN.R-project.org/package=compositions.

  • Borovec, Z. (1996). Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Science of the Total Environment, 177(1–3), 237–250.

    Google Scholar 

  • Buccianti, A., & Grunsky, E. (2014). Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes? Elsevier.

    Google Scholar 

  • Cameron, E. M., & Hobbs, J. D. (1971). Computerized methods for interpreting reconnaissance geochemical surveys. Canadian Institute of Mining, Metallurgy and Petroleum Special, 11, 569.

    Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS (Vol. 11). Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2011a). Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration, 110(2), 167–185.

    Google Scholar 

  • Carranza, E. J. M. (2011b). Editorial: Geocomputation of mineral exploration targets. Computers & Geosciences, 37(12), 1907–1916.

    Google Scholar 

  • Carroll, J. B. (1953). An analytical solution for approximating simple structure in factor analysis. Psychometrika, 18(1), 23–38.

    Google Scholar 

  • Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276.

    Google Scholar 

  • Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2017). Shiny: web application framework for R. R Package Version, 1(5).

  • Chapman, R. P. (1978). Evaluation of some statistical methods of interpreting multi-element geochemical drainage data from New Brunswick. Journal of the International Association for Mathematical Geology, 10(2), 195–224.

    Google Scholar 

  • Chauhan, S., Sharma, M., Arora, M. K., & Gupta, N. K. (2010). Landslide susceptibility zonation through ratings derived from artificial neural network. International Journal of Applied Earth Observation and Geoinformation, 12(5), 340–350.

    Google Scholar 

  • Chayes, F. (1960). On correlation between variables of constant sum. Journal of Geophysical Research, 65(12), 4185–4193.

    Google Scholar 

  • Chen, J., Yousefi, M., Zhao, Y., Zhang, C., Zhang, S., Mao, Z., Peng, M., & Han, R. (2019a). Modelling ore-forming processes through a cosine similarity measure: Improved targeting of porphyry copper deposits in the Manzhouli belt, China. Ore Geology Reviews, 107, 108–118.

    Google Scholar 

  • Chen, L., Guan, Q., Feng, B., Yue, H., Wang, J., & Zhang, F. (2019b). A multi-convolutional autoencoder approach to multivariate geochemical anomaly recognition. Minerals, 9(5), 270.

    Google Scholar 

  • Chen, Y. (2015). Mineral potential mapping with a restricted Boltzmann machine. Ore Geology Reviews, 71, 749–760. https://doi.org/10.1016/J.OREGEOREV.2014.08.012

    Article  Google Scholar 

  • Chen, Y., Sun, G., & Zhao, Q. (2021a). Distance anomaly factors for gold potential mapping in the Jinchanggouliang area, Inner Mongolia, China. Earth Science Informatics, 14(2), 1083–1099. https://doi.org/10.1007/s12145-021-00614-5

    Article  Google Scholar 

  • Chen, Y., Wang, S., Zhao, Q., & Sun, G. (2021b). Detection of multivariate geochemical anomalies using the bat-optimized isolation forest and bat-optimized elliptic envelope models. Journal of Earth Science, 32(2), 415–426.

    Google Scholar 

  • Chen, Y., & Wu, W. (2016). A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis. Ore Geology Reviews, 74, 26–38.

    Google Scholar 

  • Chen, Y., & Wu, W. (2017a). Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochemistry: Exploration, Environment, Analysis, 17(3), 231–238.

    Google Scholar 

  • Chen, Y., & Wu, W. (2017b). Mapping mineral prospectivity by using one-class support vector machine to identify multivariate geological anomalies from digital geological survey data. Australian Journal of Earth Sciences, 64(5), 639–651.

    Google Scholar 

  • Chen, Y., & Wu, W. (2017c). Mapping mineral prospectivity using an extreme learning machine regression. Ore Geology Reviews, 80, 200–213.

    Google Scholar 

  • Chen, Y., Wu, W., & Zhao, Q. (2019c). A bat-optimized one-class support vector machine for mineral prospectivity mapping. Minerals, 9(5), 317.

    Google Scholar 

  • Cheng, Q. (2000). GeoDAS phase I: user’s guide & exercise manual (p. 298). Unpublished Notes.

    Google Scholar 

  • Cheng, Q. (2004). A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns. Mathematical Geology, 36(3), 345–360.

    Google Scholar 

  • Cheng, Q. (2007). Multifractal imaging filtering and decomposition methods in space, Fourier frequency, and eigen domains. Nonlinear Processes in Geophysics, 14(3), 293–303.

    Google Scholar 

  • Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55–70. https://doi.org/10.1016/j.gexplo.2012.07.007

    Article  Google Scholar 

  • Cheng, Q., Bonham-Carter, G., Wang, W., Zhang, S., Li, W., & Qinglin, X. (2011). A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Computers & Geosciences, 37(5), 662–669.

    Google Scholar 

  • Chork, C. Y., & Salminen, R. (1993). Interpreting exploration geochemical data from Outokumpu, Finland: A MVE-robust factor analysis. Journal of Geochemical Exploration, 48(1), 1–20.

    Google Scholar 

  • Chung-Wen, Y. (1981). Mechanisms of ore formation and primary dispersion at the Dexing porphyry copper deposit, Jiangxi, and their implications in geochemical exploration. In Developments in economic geology (Vol. 15). Elsevier.

  • Closs, L. G., & Nichol, I. (1975). The role of factor and regression analysis in the interpretation of geochemical reconnaissance data. Canadian Journal of Earth Sciences, 12(8), 1316–1330.

    Google Scholar 

  • Coope, J. A. (1973). Geochemical prospecting for porphyry copper-type mineralization—A review. Journal of Geochemical Exploration, 2(2), 81–102.

    Google Scholar 

  • Cox, D. P., & Singer, D. A. (1986). Mineral deposit models (Vol. 1693). US Government Printing Office Bulletin.

  • DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44(3), 837–845

    Google Scholar 

  • Demšar, U., Harris, P., Brunsdon, C., Fotheringham, A. S., & McLoone, S. (2013). Principal component analysis on spatial data: An overview. Annals of the Association of American Geographers, 103(1), 106–128.

    Google Scholar 

  • Dumitriu, M., Dumitriu, C., & David, M. (1980). Typological factor analysis: A new classification method applied to geology. Journal of the International Association for Mathematical Geology, 12(1), 69–77.

    Google Scholar 

  • Eastment, H. T., & Krzanowski, W. J. (1982). Cross-validatory choice of the number of components from a principal component analysis. Technometrics, 24(1), 73–77.

    Google Scholar 

  • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barcelo-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279–300.

    Google Scholar 

  • Esmaeiloghli, S., Tabatabaei, S. H., & Carranza, E. J. M. (2021). Spatio-geologically informed fuzzy classification: an innovative method for recognition of mineralization-related patterns by integration of elemental, 3D spatial, and geological information. Natural Resources Research, 30, 989–1010. https://doi.org/10.1007/s11053-020-09798-x

    Article  Google Scholar 

  • Evans, A. M. (2009). Ore geology and industrial minerals: An introduction. John Wiley & Sons.

    Google Scholar 

  • Fabrigar, L. R., & Wegener, D. T. (2011). Exploratory factor analysis. Oxford University Press.

    Google Scholar 

  • Fatehi, M., & Asadi, H. H. (2017). Application of semi-supervised fuzzy c-means method in clustering multivariate geochemical data, a case study from the Dalli Cu-Au porphyry deposit in central Iran. Ore Geology Reviews, 81(11), 245–255. https://doi.org/10.1016/j.oregeorev.2016.10.002

    Article  Google Scholar 

  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.

    Google Scholar 

  • Filzmoser, P., Hron, K., Reimann, C., & Garrett, R. (2009). Robust factor analysis for compositional data. Computers & Geosciences, 35(9), 1854–1861.

    Google Scholar 

  • Filzmoser, P., & Todorov, V. (2011). Review of robust multivariate statistical methods in high dimension. Analytica Chimica Acta, 705(1–2), 2–14.

    Google Scholar 

  • Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58(3), 453–467.

    Google Scholar 

  • Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16–28.

    Google Scholar 

  • Garrett, R. G., Nichol, I., & Canney, F. C. (1969). Factor analysis as an aid in the interpretation of regional geochemical stream sediment data. Golden: Colorado School of Mines, 245–264.

  • Goksuluk, D., Korkmaz, S., Zararsiz, G., & Karaagaoglu, A. E. (2016). easyROC: an interactive web-tool for ROC curve analysis using R language environment. RJ, 8(2), 213–230.

    Google Scholar 

  • Govett, G. J. S. (2013). Rock geochemistry in mineral exploration (Vol. 3). Elsevier.

    Google Scholar 

  • Grice, J. W. (2001). Computing and evaluating factor scores. Psychological Methods, 6(4), 430.

    Google Scholar 

  • Grigoryan, S. V. (1974). Primary geochemical halos in prospecting and exploration of hydrothermal deposits. International Geology Review, 16(1), 12–25.

    Google Scholar 

  • Grünfeld, K. (2005). Dealing with outliers and censored values in multi-element geochemical data–a visualization approach using XmdvTool. Applied Geochemistry, 20(2), 341–352.

    Google Scholar 

  • Grunsky, E. C., & Agterberg, F. P. (1988). Spatial and multivariate analysis of geochemical data from metavolcanic rocks in the Ben Nevis area, Ontario. Mathematical Geology, 20(7), 825–861.

    Google Scholar 

  • Grunsky, E. C., Drew, L. J., & Sutphin, D. M. (2009). Process recognition in multi-element soil and stream-sediment geochemical data. Applied Geochemistry, 24(8), 1602–1616.

    Google Scholar 

  • Guilbert, J. M., & Lowell, J. D. (1974). Variations in zoning patterns in porphyry copper deposits. Canadian Institute of Mining and Metallurgy Bulletin, 67, 99–109.

    Google Scholar 

  • Guilbert, J. M., & Park, C. F., Jr. (2007). The geology of ore deposits. Waveland Press.

    Google Scholar 

  • Hajsadeghi, S., Asghari, O., Mirmohammadi, M., & Meshkani, S. A. (2019). Discrimination of mineralized rock types in a copper-rich volcanogenic massive sulfide deposit through fast independent component and factor analysis. Natural Resources Research, 29(1), 161–171.

    Google Scholar 

  • Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36.

    Google Scholar 

  • Harman, H. H. (1976). Modern factor analysis. University of Chicago press.

    Google Scholar 

  • Harraz, H. Z., & Hamdy, M. M. (2015). Zonation of primary haloes of Atud auriferous quartz vein deposit, Central Eastern Desert of Egypt: A potential exploration model targeting for hidden mesothermal gold deposits. Journal of African Earth Sciences, 101, 1–18.

    Google Scholar 

  • Hendrickson, A. E., & White, P. O. (1964). Promax: A quick method for rotation to oblique simple structure. British Journal of Statistical Psychology, 17(1), 65–70.

    Google Scholar 

  • Hitzman, M. W., Oreskes, N., & Einaudi, M. T. (1992). Geological characteristics and tectonic setting of Proterozoic iron oxide Cu-U-Au REE deposits. Precambrian Research, 58(1–4), 241–287.

    Google Scholar 

  • Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185.

    Google Scholar 

  • Howarth, R. J., & Sinding-Larsen, R. (1983). Multivariate analysis. In Handbook of exploration geochemistry (Vol. 2). Elsevier.

  • Howarth, R. J. (1983). Handbook of exploration geochemistry: statistics and data analysis in geochemical prospecting (Vol. 2). Elsevier.

  • Hoyle, R. H., & Duvall, J. L. (2004). Determining the number of factors in exploratory and confirmatory factor analysis. Handbook of Quantitative Methodology for the Social Sciences, https://doi.org/10.4135/9781412986311.n16.

  • Hsu, L. C., & Galli, P. E. (1973). Origin of the scheelite-powellite series of minerals. Economic Geology, 68(5), 681–696.

    Google Scholar 

  • Jackson, J. E. (2005). A user’s guide to principal components (Vol. 587). London: Wiley.

    Google Scholar 

  • John, D. A., Ayuso, R. A., Barton, M. D., Blakely, R. J., Bodnar, R. J., Dilles, J. H., Graybeal, F. T., Mars, J. C., McPhee, D. K., & Seal, R. R. (2010). Porphyry copper deposit model. Scientific Investigations Report.

  • Jolliffe, I. (2011). Principal component analysis. Springer.

    Google Scholar 

  • Joly, A., Porwal, A., & McCuaig, T. C. (2012). Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: Mineral system analysis, targeting model and prospectivity analysis. Ore Geology Reviews, 48, 349–383.

    Google Scholar 

  • Joreskog, K. G., Klovan, J. E., & Reyment, R. A. (1976). Geological factor analysis. Elsevier Scientific Publishing Company

  • Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187–200.

    Google Scholar 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151.

    Google Scholar 

  • Khosravi, A. (2007). Geological and Alteration Map of Kuh Panj copper deposit. Exploration Department, National Iranian Copper Industries Company, Internal Report.

  • Kouzmanov, K., & Pokrovski, G. S. (2012). Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems. InSpecial Publication of the Society of Economic Geologists (vol.16).

  • Krumbein, W. C., & Graybill, F. A. (1965). An introduction to statistical models in geology. McGraw-Hill.

    Google Scholar 

  • Leggo, M. D. (1977). Contrasting geochemical expressions of copper mineralization at Namosi, Fiji. Journal of Geochemical Exploration, 8, 431–456.

    Google Scholar 

  • Levinson, A. A. (1974). Introduction to exploration geochemistry. Applied Publishing.

  • Lin, N., Chen, Y., Liu, H., & Liu, H. (2021). A comparative study of machine learning models with hyperparameter optimization algorithm for mapping mineral prospectivity. Minerals, 11(2), 159.

    Google Scholar 

  • Lin, N., Chen, Y., & Lu, L. (2020). Mineral potential mapping using a conjugate gradient logistic regression model. Natural Resources Research, 29(1), 173–188.

    Google Scholar 

  • Lin, X., Zhang, B., & Wang, X. (2014). Application of factor analysis and concentration-volume fractal modeling to delineation of 3D geochemical patterns: a case study of the Jinwozi gold field, NW China. Geochemistry Exploration Environment Analysis, 14(4), 359–367.

    Google Scholar 

  • Liu, Y., Cheng, Q., Zhou, K., Xia, Q., & Wang, X. (2016). Multivariate analysis for geochemical process identification using stream sediment geochemical data: A perspective from compositional data. Geochemical Journal, 50(4), 293–314.

    Google Scholar 

  • Liu, Y., Zhou, K., Zhang, N., & Wang, J. (2018). Maximum entropy modeling for orogenic gold prospectivity mapping in the Tangbale-Hatu belt, western Junggar, China. Ore Geology Reviews, 100, 133–147.

    Google Scholar 

  • López-Ratón, M., Rodríguez-Álvarez, M. X., Cadarso-Suárez, C., & Gude-Sampedro, F. (2014). OptimalCutpoints: An R package for selecting optimal cutpoints in diagnostic tests. Journal of Statistical Software, 61(8), 1–36.

    Google Scholar 

  • Lowell, J. D. (1968). Geology of the Kalamazoo orebody, San Manuel district, Arizona . Economic Geology, 63(6), 645–654.

    Google Scholar 

  • Lowell, J. D., & Guilbert, J. M. (1970). Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology, 65(4), 373–408.

    Google Scholar 

  • Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P., & Palarea-Albaladejo, J. (2012). Model-based replacement of rounded zeros in compositional data: Classical and robust approaches. Computational Statistics & Data Analysis, 56(9), 2688–2704.

    Google Scholar 

  • Mathieu, L. (2016). Quantifying hydrothermal alteration with normative minerals and other chemical tools at the Beattie Syenite, Abitibi greenstone belt, Canada. Geochemistry: Exploration, Environment, Analysis, 16(3–4), 233–244.

    Google Scholar 

  • Mathieu, L. (2018). Quantifying hydrothermal alteration: A review of methods. Geosciences, 8(7), 245.

    Google Scholar 

  • Melegy, A. A., & El-Agami, N. L. (2004). Factors controlling the chemistry and mineralogy of selected soil types of the Czech Republic and Egypt. Bulletin of Geosciences, 79(1), 71–79.

    Google Scholar 

  • Mirnejad, H., Mathur, R., Einali, M., Dendas, M., & Alirezaei, S. (2010). A comparative copper isotope study of porphyry copper deposits in Iran. Geochemistry: Exploration, Environment, Analysis, 10(4), 413–418.

    Google Scholar 

  • Morsy, M. A. (1993). An example of application of factor analysis on geochemical stream sediment survey in Umm Khariga area, Eastern Desert, Egypt. Mathematical Geology, 25(7), 833–850.

    Google Scholar 

  • Nguyen, T. T., & Vu, T. D. (2019). Identification of multivariate geochemical anomalies using spatial autocorrelation analysis and robust statistics. Ore Geology Reviews, 111, 102985. https://doi.org/10.1016/j.oregeorev.2019.102985

  • Nichol, I., Garrett, R. G., Webb, J. S., & Cameron, E. M. (1966). Automatic data plotting and mathematical and statistical interpretation of geochemical data. In Proceedings, Symposium on Geochemical Prospecting, 195–210.

  • Nichol, I., Garrett, R. G., & Webb, J. S. (1969). The role of some statistical and mathematical methods in the interpretation of regional geochemical data. Economic Geology, 64(2), 204–220.

    Google Scholar 

  • Nielsen, A. A., Conradsen, K., Pedersen, J. L., & Steenfelt, A. (1997). Spatial factor analysis of stream sediment geochemistry data from South Greenland. In Proceedings of the third annual conference of the international association for mathematical geology Barcelona, Spain, 955–960.

  • Nordhausen, K., Oja, H., Filzmoser, P., & Reimann, C. (2015). Blind source separation for spatial compositional data. Mathematical Geosciences, 47(7), 753–770. https://doi.org/10.1007/s11004-014-9559-5

    Article  Google Scholar 

  • Nykänen, V. (2008). Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research, 17(1), 29–48.

    Google Scholar 

  • Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71, 853–860.

    Google Scholar 

  • Palarea-Albaladejo, J., & Martín-Fernández, J.-A. (2008). A modified EM alr-algorithm for replacing rounded zeros in compositional data sets. Computers & Geosciences, 34(8), 902–917.

    Google Scholar 

  • Palarea-Albaladejo, J., Martín-Fernández, J. A., & Gómez-García, J. (2007). A parametric approach for dealing with compositional rounded zeros. Mathematical Geology, 39(7), 625–645.

    Google Scholar 

  • Pawlowsky-Glahn, V., & Egozcue, J. J. (2006). Compositional data and their analysis: An introduction. Geological Society, London, Special Publications, 264(1), 1–10.

    Google Scholar 

  • Pawlowsky-Glahn, V., Egozcue, J. J., & Tolosana-Delgado, R. (2015). Modeling and analysis of compositional data. Wiley.

    Google Scholar 

  • Pirajno, F. (2012). Hydrothermal mineral deposits: principles and fundamental concepts for the exploration geologist. Springer.

    Google Scholar 

  • Porwal, A., & Carranza, E. J. M. (2015). Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Elsevier.

    Google Scholar 

  • Qing-ji, D., Jian-ping, C., & Yu, T. (2008). Application of R type factor analyses in mineralization prognosis by an example of Huang? buling gold deposit, Shandong Province. Geology and Exploration, 44, 64–68.

    Google Scholar 

  • R Core Team, (2020). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/. Vienna, Austria.

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 17(3), 185–206.

    Google Scholar 

  • Reimann, C., Filzmoser, P., Garrett, R., & Dutter, R. (2011). Statistical data analysis explained: Applied environmental statistics with R. Wiley.

    Google Scholar 

  • Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., Dinelli, E., Ladenberger, A., Team, T. G. P. (2012). The concept of compositional data analysis in practice—total major element concentrations in agricultural and grazing land soils of Europe. Science of the Total Environment, 426, 196–210.

    Google Scholar 

  • Rencher, A. C. (2003). Methods of multivariate analysis (Vol. 492). Wiley.

    Google Scholar 

  • Robb, L. (2004). Introduction to ore-forming processes. Blackwell publishing.

    Google Scholar 

  • Saager, R., & Sinclair, A. J. (1974). Factor analysis of stream sediment geochemical data from the Mount Nansen area, Yukon Territory, Canada. Mineralium Deposita, 9(3), 243–252.

    Google Scholar 

  • Schwartz, G. M. (1947). Hydrothermal alteration in the" porphyry copper" deposits. Economic Geology, 42(4), 319–352.

    Google Scholar 

  • Sillitoe, R. H. (1997). Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 44(3), 373–388.

    Google Scholar 

  • Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105(1), 3–41.

    Google Scholar 

  • Solovov, A. P., & Kuznetov, V. V. (1987). Geochemical prospecting for mineral deposits. Mir Publ.

    Google Scholar 

  • Sopuck, V. J., de Carla, A., Wray, E. M., & Cooper, B. (1984). The application of lithogeochemistry in the search for unconformity-type uranium deposits, northern Saskatchewan, Canada. Journal of Geochemical Exploration 19(1-3), 77–99

    Google Scholar 

  • Spackman, K. A. (1989). Signal detection theory: Valuable tools for evaluating inductive learning. In Proceedings of the sixth international workshop on machine learning, 160–163.

  • Sun, T., Li, H., Wu, K., Chen, F., Zhu, Z., & Hu, Z. (2020). Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: a case study from Southern Jiangxi Province, China. Minerals, 10(2), 102.

    Google Scholar 

  • Tape, T. G. (2000). Using the receiver operating characteristic (ROC) curve to analyze a classification model. University of Nebraska, 1–3.

  • Templ, M., Hron, K., Filzmoser, P., & Gardlo, A. (2016). Imputation of rounded zeros for high-dimensional compositional data. Chemometrics and Intelligent Laboratory Systems, 155, 183–190.

    Google Scholar 

  • Thomson, G. H. (1939). The factorial analysis of human ability. University of London Press LTD.

  • Thurstone, L. L. (1935). The vectors of mind. University Press Chicago.

    Google Scholar 

  • Van den Boogaart, K. G., & Tolosana-Delgado, R. (2013). Analyzing compositional data with R (Vol. 122). Springer.

    Google Scholar 

  • Van Helvoort, P.-J., Filzmoser, P., & van Gaans, P. F. M. (2005). Sequential factor analysis as a new approach to multivariate analysis of heterogeneous geochemical datasets: An application to a bulk chemical characterization of fluvial deposits (Rhine–Meuse delta, The Netherlands). Applied Geochemistry, 20(12), 2233–2251.

    Google Scholar 

  • Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41(3), 321–327.

    Google Scholar 

  • Voudouris, P., & Arikas, K. (2003). The Pagoni Rachi and Kassiteres porphyry Cu–(±Mo) occurrences in Thrace: ore mineralogy of late-stage veins. In Mineral Exploration and Sustainable Development (411–414).

  • Voudouris, P., Melfos, V., Spry, P., Bindi, L., Moritz, R., Ortelli, M., & Kartal, T. (2013). Extremely Re-rich molybdenite from porphyry Cu-Mo-Au prospects in northeastern Greece: mode of occurrence causes of enrichment, and implications for gold exploration. Minerals, 3(2), 165–191.

    Google Scholar 

  • Vriend, S. P. (1990). Practical applications of multivariate statistics in exploration geochemistry. Faculteit Aardwetenschappen.

    Google Scholar 

  • Wang, W., & Cheng, Q. (2008). Mapping mineral potential by combining multi-scale and multi-source geo-information. In IGARSS 2008–2008 IEEE international geoscience and remote sensing symposium, 2, 1321–1324.

  • Wang, J., & Zuo, R. (2020). Assessing geochemical anomalies using geographically weighted lasso. Applied Geochemistry. https://doi.org/10.1016/j.apgeochem.2020.104668

    Article  Google Scholar 

  • Wang, J., Zuo, R., & Caers, J. (2017). Discovering geochemical patterns by factor-based cluster analysis. Journal of Geochemical Exploration, 181, 106–115.

    Google Scholar 

  • Wang, L., Wu, X., Zhang, B., Li, X., Huang, A., Meng, F., & Dai, P. (2019a). Recognition of significant surface soil geochemical anomalies via weighted 3D shortest-distance field of subsurface orebodies: A case study in the hongtoushan copper mine, NE China. Natural Resources Research, 28(3), 587–607.

    Google Scholar 

  • Wang, X., Liu, J., Carranza, E. J. M., Wang, J., Wang, G., Zhai, D., Yuan, Q., Shi, W., & Zhang, J. (2019b). A combined approach using spatially-weighted principal components analysis and wavelet transformation for geochemical anomaly mapping in the Dashui ore-concentration district, Central China. Journal of Geochemical Exploration, 197, 228–237.

    Google Scholar 

  • Wang, Z., Dong, Y., & Zuo, R. (2019c). Mapping geochemical anomalies related to Fe–polymetallic mineralization using the maximum margin metric learning method. Ore Geology Reviews, 107, 258–265.

    Google Scholar 

  • Wang, Z., Zuo, R., & Dong, Y. (2019d). Mapping geochemical anomalies through integrating random forest and metric learning methods. Natural Resources Research, 28, 1–14.

    Google Scholar 

  • Williams, P. J., Barton, M. D., Johnson, D. A., Fontboté, L., De Haller, A., Mark, G., Oliver, N. H. S., & Marschik, R. (2005). Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin. In Economic Geology, 100th Anniversary Volume.

  • Wu, R., Chen, J., Zhao, J., Chen, J., & Chen, S. (2020). Identifying geochemical anomalies associated with gold mineralization using factor analysis and spectrum-area multifractal model in Laowan District, Qinling-Dabie metallogenic belt, Central China. Minerals, 10(3), 229.

    Google Scholar 

  • Wu, W., & Chen, Y. (2018). Application of isolation forest to extract multivariate anomalies from geochemical exploration data. Global Geology, 21(1), 36–47.

    Google Scholar 

  • Xiang, Z., Gu, X., Wang, E., Wang, X., Zhang, Y., & Wang, Y. (2019). Delineation of deep prospecting targets by combining factor and fractal analysis in the Kekeshala skarn Cu deposit, NW China. Journal of Geochemical Exploration, 198, 71–81.

    Google Scholar 

  • Xiao, F., Wang, K., Hou, W., & Erten, O. (2019). Identifying geochemical anomaly through spatially anisotropic singularity mapping: A case study from silver-gold deposit in Pangxidong district, SE China. Journal of Geochemical Exploration, 210, 106453.

  • Xiao, F., Chen, J., Hou, W., Wang, Z., Zhou, Y., & Erten, O. (2018). A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China. Journal of Geochemical Exploration, 189, 122–137.

    Google Scholar 

  • Xiao, F., Chen, J., Zhang, Z., Wang, C., Wu, G., & Agterberg, F. P. (2012). Singularity mapping and spatially weighted principal component analysis to identify geochemical anomalies associated with Ag and Pb-Zn polymetallic mineralization in Northwest Zhejiang, China. Journal of Geochemical Exploration, 122, 90–100.

    Google Scholar 

  • Xiao, K., Li, N., Porwal, A., Holden, E.-J., Bagas, L., & Lu, Y. (2015). GIS-based 3D prospectivity mapping: A case study of Jiama copper-polymetallic deposit in Tibet, China. Ore Geology Reviews, 71, 611–632.

    Google Scholar 

  • Yang, J., & Cheng, Q. (2015). A comparative study of independent component analysis with principal component analysis in geological objects identification, Part I: Simulations. Journal of Geochemical Exploration, 149, 127–135. https://doi.org/10.1016/j.gexplo.2014.11.013

    Article  Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24–35.

    Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry Exploration Environment Analysis, 14(1), 45–58.

    Google Scholar 

  • Yu, X., Wang, S., Wang, H., Liang, Y., Chen, S., Wu, K., Yang, Z., Li, C., Chang, Y., Zhan, Y., Yao, W., & Hu, D. (2021). Detection of geochemical element assemblage anomalies using a local correlation approach. Journal of Earth Science, 32(2), 408–414. https://doi.org/10.1007/s12583-021-1444-9

    Article  Google Scholar 

  • Zhang, S., Xiao, K., Carranza, E. J. M., Yang, F., & Zhao, Z. (2019). Integration of auto-encoder network with density-based spatial clustering for geochemical anomaly detection for mineral exploration. Computers & Geosciences, 130, 43–56. https://doi.org/10.1016/j.cageo.2019.05.011.

  • Zhang, D., Ren, N., & Hou, X. (2018). An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1.0) and its application to mineral prospectivity mapping. Geoscientific Model Development, 11(6), 2525.

    Google Scholar 

  • Zhang, S., Carranza, E. J. M., Wei, H., Xiao, K., Yang, F., Xiang, J., Zhang, S., & Xu, Y. (2021a). Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network. Natural Resources Research, 30(2), 1011–1031. https://doi.org/10.1007/s11053-020-09789-y

    Article  Google Scholar 

  • Zhang, S., Carranza, E. J. M., Xiao, K., Chen, Z., Li, N., Wei, H., Xiang, J., Sun, L., & Xu, Y. (2021b). Geochemically constrained prospectivity mapping aided by unsupervised cluster analysis. Natural Resources Research, 30(3), 1955–1975. https://doi.org/10.1007/s11053-021-09865-x

    Article  Google Scholar 

  • Zhao, J., Chen, S., & Zuo, R. (2017). Identification and mapping of lithogeochemical signatures using staged factor analysis and fractal/multifractal models. Geochemistry: Exploration, Environment, Analysis, 17(3), 239–251.

    Google Scholar 

  • Zhao, J., Wang, W., Cheng, Q., & Agterberg, F. (2016). Mapping of Fe mineral potential by spatially weighted principal component analysis in the eastern Tianshan mineral district, China. Journal of Geochemical Exploration, 164, 107–121.

    Google Scholar 

  • Zhu, B., & Xu, W. (1985). Geochemical characteristics of porphyry copper (molybdenum) mineralization. Geochemistry, 4(3), 197–209.

    Google Scholar 

Download references

Acknowledgments

Thanks are due to the Associate Editor, Professor Renguang Zuo, for handling the manuscript and two anonymous reviewers for their constructive comments and suggestions, which helped improve this paper. The NICICO is also acknowledged for providing original geological and geochemical data and other information about the Kuh-Panj porphyry deposit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hassan Tabatabaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeiloghli, S., Tabatabaei, S.H., Carranza, E.J.M. et al. Spatially-Weighted Factor Analysis for Extraction of Source-Oriented Mineralization Feature in 3D Coordinates of Surface Geochemical Signal. Nat Resour Res 30, 3925–3953 (2021). https://doi.org/10.1007/s11053-021-09933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09933-2

Keywords

Navigation