Skip to main content
Log in

Experimental Investigation of Drillability Indices of Thermal Granite After Water-Cooling Treatment

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Understanding the drillability indices of thermal granite under various water-cooling conditions is of great significance for deep drilling and wellbore stability during the extraction of deep geothermal energy. In this paper, we report the results of micro-drilling tests, indentation hardness tests, friction-and-wear tests as well as conventional physico–mechanical tests on thermal granite after water-cooling treatment, and the relationships between mechanical strength and drilling parameters of granite are discussed based on statistical analysis. In addition, the micro-characteristics of thermal and water-cooling defects in granite were observed via scanning electron microscopy. With increase in thermal temperature, the conventional physico–mechanical parameters and indentation hardness of thermal granite after water-cooling decreased linearly, while the average values of drilling rate, plasticity coefficient, and the mass losses of granite specimens and the grinder increased exponentially. The average P-wave velocity, uniaxial compressive strength, tensile strength and indentation hardness decreased by 84.9, 66.2, 73.3 and 66.1%, respectively, when the granite was heated to 600 °C. At 600 °C, the wellbore wall of granite collapsed during the micro-drilling tests and the friction-and-wear tests, and the average width and density of micro-cracks of thermal granite increased to 20.54 μm and 4.82 mm/mm2. The average width and density of micro-cracks in thermal granite under various water-cooling conditions developed gradually with thermal temperature, which was the main reason for the degradation in the drillability indices of granite. Strong links exist between the mechanical strength and drilling parameters of granite after water-cooling, and the drilling parameters of thermal granite can be estimated by the use of mechanical strength with given empirical equations. This study provides a theoretical basis for the geothermally accurate simulation and engineering of wellbore stability for deep hot dry rock drilling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Anemangely, M., Ramezanzadeh, A., Tokhmechi, B., Molaghab, A., & Mohammadian, A. (2018). Development of a new rock drillability index for oil and gas reservoir rocks using punch penetration test. Journal of Petroleum Science and Engineering, 166, 131–145.

    Article  Google Scholar 

  • Asai, P., Panja, P., Mclennan, J., & Deo, M. (2019). Effect of different flow schemes on heat recovery from enhanced geothermal systems (EGS). Energy, 175, 667–676.

    Article  Google Scholar 

  • Asai, P., Panja, P., Velasco, R., Mclennan, J., & Moore, J. (2018). Fluid flow distribution in fractures for a doublet system in Enhanced Geothermal Systems (EGS). Geothermics, 75, 171–179.

    Article  Google Scholar 

  • Bérard, T., & Cornet, F. H. (2003). Evidence of thermally induced borehole elongation: A case study at Soultz, France. International Journal of Rock Mechanics and Mining Sciences, 40, 1121–1140.

    Article  Google Scholar 

  • Breede, K., Dzebisashvili, K., Liu, X., & Falcone, G. (2013). A systematic review of enhanced (or engineered) geothermal systems: Past, present and future. Geothermal Energy, 1(1), 1–27.

    Article  Google Scholar 

  • Bruland, A., Dahlo, T., & Nilsen, B. (1995). Tunnelling Performance Estimation Based On Drillability Testing. 8th ISRM Congress.

  • Capik, M., & Yilmaz, A. (2017). Correlation between Cerchar abrasivity index, rock properties, and drill bit lifetime. Arabian Journal of Geosciences, 10(1), 1–12.

    Article  Google Scholar 

  • Cardu, M., Giraudi, A., Rocca, V., & Verga, F. (2012). Experimental laboratory tests focused on rock characterisation for mechanical excavation. International Journal of Mining, Reclamation and Environment, 26(3), 199–216.

    Article  Google Scholar 

  • Chen, S. W., Yang, C. H., & Wang, G. B. (2017). Evolution of thermal damage and permeability of Beishan granite. Applied Thermal Engineering, 110, 1533–1542.

    Article  Google Scholar 

  • Feng, Z. J., Yang, Y. F., Niu, W. X., Zhao, Y. S., Wan, Z. J., & Yao, Y. B. (2020). Permeability and meso-structure evolution of coking coal subjected to long-term exposure of triaxial stresses and high-pressure nitrogen. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6, 41.

    Article  Google Scholar 

  • Fox, D. B., Sutter, D., Beckers, K. F., Lukawski, M. Z., Koch, D. L., Anderson, B. J., & Tester, J. W. (2013). Sustainable heat farming: Modeling extraction and recovery in discretely fractured geothermal reservoirs. Geothermics, 46, 42–54.

    Article  Google Scholar 

  • Frash, L. P., Gutierrez, M., Hampton, J., & Hood, J. (2013). Laboratory simulation of binary and triple well EGS in large granite blocks using AE events for drilling guidance. Geothermics, 55, 1–15.

    Article  Google Scholar 

  • Glover, P. W. J., Baud, P., Darot, M., Meredith, P. G., Boon, S. A., Leravalec, M., Zoussi, S., & Reuschlé, T. (1995). α/β phase transition in quartz monitored using acoustic emissions. Geophysical Journal International, 120(3), 775–782.

    Article  Google Scholar 

  • Heinrichs, J., Olsson, M., Almqvist, B., & Jacobson, S. (2018). Initial surface failure and wear of cemented carbides in sliding contact with different rock types. Wear, 408–409, 43–55.

    Article  Google Scholar 

  • Isaka, B. L. A., Ranjith, P. G., Rathnaweera, T. D., Perera, M. S. A., Chandrasekharam, D., & Kumari, W. F. P. (2018). An influence of thermally-induced micro-cracking under cooling treatments: Mechanical characteristics of Australian granite. Energies, 11(6), 1338.

    Article  Google Scholar 

  • ISRM. (2007). The Complete ISRM Suggested Methods for Rock Characterisation, Testing and Monitoring: 1974–2006. 2007; ISRM Commission on Testing Methods, Ankara, Turkey.

  • Jin, P., Hu, Y., Shao, J., Zhao, G., Zhu, X., & Li, C. (2019). Influence of different thermal cycling treatments on the physical, mechanical and transport properties of granite. Geothermics, 78, 118–128.

    Article  Google Scholar 

  • Khandelwal, M., & Armaghani, D. (2016). Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique. Geotechnical and Geological Engineering, 34(2), 605–620.

    Article  Google Scholar 

  • Kim, K., Kemeny, J., & Nickerson, M. (2014). Effect of rapid thermal cooling on mechanical rock properties. Rock Mechanics and Rock Engineering, 47(6), 2005–2019.

    Article  Google Scholar 

  • Kumari, W. G. P., Beaumont, D. G., Ranjith, P. G., Perera, M. S. A., Isaka, B. L. A., & Khandelwal, M. (2019). An experimental study on tensile characteristics of granite rocks exposed to different high-temperature treatments. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 5(1), 47–64.

    Article  Google Scholar 

  • Kumari, W. G. P., Ranjith, P. G., Perera, M. S. A., & Chen, B. K. (2018a). Experimental investigation of quenching effect on mechanical, microstructural and flow characteristics of reservoir rocks: Thermal stimulation method for geothermal energy extraction. Journal of Petroleum Science and Engineering, 162, 419–433.

    Article  Google Scholar 

  • Kumari, W. G. P., Ranjith, P. G., Perera, M. S. A., Li, X., Li, L. H., Chen, B. K., Isaka, B. L. A., & De Silva, V. R. S. (2018b). Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks. Fuel, 230, 138–154.

    Article  Google Scholar 

  • Li, N., Zhang, S. C., Ma, X. F., Zou, Y. S., Li, S. H., & Zhang, Z. P. (2020). Thermal effect on the evolution of hydraulic fracture conductivity: An experimental study of enhanced geothermal system. Journal of Petroleum Science and Engineering, 187, 106814.

    Article  Google Scholar 

  • Li, W., Zhao, X. H., Li, Y. F., Ji, Y. H., Peng, H., Liu, L., & Yang, Q. (2015). Laboratory investigations on the effects of surfactants on rate of penetration in rotary diamond drilling. Journal of Petroleum Science and Engineering, 134, 114–122.

    Article  Google Scholar 

  • Li, Y. L., Peng, J. M., Bo, K., Huang, C. Y., Zhang, Y. J., & Zhang, P. Y. (2020). Analysis on the mechanical properties of granite rock near the wellbore after percussive drilling and AWJ perforation. Journal of Petroleum Science and Engineering, 184, 106489.

    Article  Google Scholar 

  • Liu, G., & Reccia, E. (2018). Study on mechanical properties and damage evolution law of secondary destruction induced by simultaneous unloading after the peak of the curve of sandstone. Shock and Vibration., 2018, 1–17.

    Article  Google Scholar 

  • Lu, G. M., Feng, X. T., Li, Y. H., & Zhang, X. (2019). The microwave-induced fracturing of hard rock. Rock Mechanics and Rock Engineering, 52(9), 3017–3032.

    Article  Google Scholar 

  • Lukawski, M. Z., Silverman, R. L., & Tester, J. W. (2016). Uncertainty analysis of geothermal well drilling and completion costs. Geothermics, 64, 382–391.

    Article  Google Scholar 

  • Lyu, Z. H., Song, X. Z., & Li, G. S. (2019). An analytical method to determine rock spallation temperature and degree of heterogeneity in thermal spallation drilling for geothermal energy. Geothermics, 77, 99–105.

    Article  Google Scholar 

  • Macias, F., Dahl, J., & Bruland, A. (2016). New rock abrasivity test method for tool life assessments on hard rock tunnel boring: The rolling indentation abrasion test (RIAT). Rock Mechanics and Rock Engineering, 49(5), 1679–1693.

    Article  Google Scholar 

  • Majeed, Y., & Butt, I. (2020). Abrasivity evaluation for wear prediction of button drill bits using geotechnical rock properties. Bulletin of Engineering Geology and the Environment, 79(2), 767–787.

    Article  Google Scholar 

  • Moein, M. J. A., Shaabani, E., & Rezaeian, M. (2014). Experimental evaluation of hardness models by drillability tests for carbonate rocks. Journal of Petroleum Science and Engineering, 113, 104–108.

    Article  Google Scholar 

  • Plinninger, R., Käsling, H., Thuro, K., & Spaun, G. (2003). Testing conditions and geomechanical properties influencing the CERCHAR abrasiveness index (CAI) value. International Journal of Rock Mechanics and Mining Sciences, 40(2), 259–263.

    Article  Google Scholar 

  • Prasad, U. (2009). Drillability of a Rock in Terms of its Physico-Mechanical and Micro-Structural Properties. ARMA, American Rock Mechanics Association.

  • Ranjith, P. G., Viete, D. R., Chen, B. J., & Perera, M. S. A. (2012). Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Engineering Geology, 151, 120–127.

    Article  Google Scholar 

  • Rossi, E., Jamali, S., Wittig, V., Saar, M. O., & Rudolf, V. R. P. (2020). A combined thermo-mechanical drilling technology for deep geothermal and hard rock reservoirs. Geothermics, 85, 101771.

    Article  Google Scholar 

  • Saadati, M., Weddfelt, K., & Larsson, P. L. (2020). A spherical indentation study on the mechanical response of selected rocks in the range from very hard to soft with particular interest to drilling application. Rock Mechanics and Rock Engineering, 53, 5809–5821.

    Article  Google Scholar 

  • Sakz, U., Kaya, G. U., & Yaral, O. (2021). Prediction of drilling rate index from rock strength and cerchar abrasivity index properties using fuzzy inference system. Arabian Journal of Geosciences, 14(5), 354.

    Article  Google Scholar 

  • Samin, M. Y., Faramarzi, A., Jefferson, I., & Harireche, O. (2019). A hybrid optimisation approach to improve long-term performance of enhanced geothermal system (EGS) reservoirs. Renewable Energy, 134, 379–389.

    Article  Google Scholar 

  • Sepúlveda, J., Arancibia, G., Molina, E., Gilbert, J. P., Duda, M., Browning, J., Roquer, T., Morata, D., Ahrens, B., & Bracke, R. (2020). Thermo-mechanical behavior of a granodiorite from the Liquiñe fractured geothermal system (39°S) in the Southern Volcanic Zone of the Andes. Geothermics., 87, 101828.

    Article  Google Scholar 

  • Shakeri, A., Mazaheri, K., & Owliya, M. (2017). Using sensitivity analysis and gradual evaluation of ignition delay error to produce accurate low-cost skeletal mechanisms for oxidation of hydrocarbon fuels under high-temperature conditions. Energy & Fuels, 31(10), 11234–11252.

    Article  Google Scholar 

  • Siratovich, P., Heap, M., Villeneuve, M., Cole, J., Kennedy, B., Davidson, J., & Reuschlé, T. (2016). Mechanical behaviour of the Rotokawa Andesites (New Zealand): Insight into permeability evolution and stress-induced behaviour in an actively utilised geothermal reservoir. Geothermics, 64, 163–179.

    Article  Google Scholar 

  • Somerton, W. H. (1992). Thermal properties and temperature-related behavior of rock/fluid systems. Elsevier, Developments in Petroleum Science, Vol. 37, Elsevier, Amsterdam, 29-38.

  • Song, X. Z., Shi, Y., Li, G. S., Yang, R. Y., Wang, G. S., Zheng, R., Li, J. C., & Lyu, Z. H. (2018). Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells. Applied Energy, 218, 325–337.

    Article  Google Scholar 

  • Tester, J. W., Anderson, B. J., & Batchelor, A. S. (2006). The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. Massachusetts Institute of Technology.

  • Teymen, A. (2020). The usability of Cerchar abrasivity index for the estimation of mechanical rock properties. International Journal of Rock Mechanics and Mining Sciences, 128, 104258.

    Article  Google Scholar 

  • Tian, H., Mei, G., Jiang, G. S., & Qin, Y. (2017). High-temperature influence on mechanical properties of diorite. Rock Mechanics and Rock Engineering, 50(6), 1661–1666.

    Article  Google Scholar 

  • Tomac, I., & Sauter, M. (2018). A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development. Renewable and Sustainable Energy Reviews, 82, 3972–3980.

    Article  Google Scholar 

  • Wang, F., Konietzky, H., Frühwirt, T., Li, Y. W., & Dai, Y. J. (2019). The influence of temperature and high-speed heating on tensile strength of granite and the application of digital image correlation on tensile failure processes. Rock Mechanics and Rock Engineering, 53(4), 1935–1952.

    Article  Google Scholar 

  • Wei, M. H., Li, G. S., Shi, H. Z., Shi, S. S., Li, Z. K., & Zhang, Y. (2016). Theories and applications of pulsed-jet drilling with mechanical specific energy. SPE Journal, 21(1), 303–310.

    Article  Google Scholar 

  • Weng, L., Wu, Z. J., & Liu, Q. S. (2020). Influence of heating/cooling cycles on the micro/macrocracking characteristics of Rucheng granite under unconfined compression. Bulletin of Engineering Geology and the Environment, 79(3), 1289–1309.

    Article  Google Scholar 

  • Yan, C. L., Deng, J. G., Yu, B. H., Li, W. L., Chen, Z. J., Hu, L. B., & Li, Y. (2014). Borehole stability in high-temperature formations. Rock Mechanics and Rock Engineering, 47(6), 2199–2209.

    Article  Google Scholar 

  • Yang, F., Wang, G., Hu, D., Liu, Y. G., Zhou, H., & Tan, X. F. (2021). Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite. Renewable Energy, 168, 544–558.

    Article  Google Scholar 

  • Yang, S. Q., Ranjith, P. G., Jing, H. W., Tian, W. L., & Ju, Y. (2017). An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics, 65, 180–197.

    Article  Google Scholar 

  • Yu, B. S., Zhang, K., & Niu, G. G. (2021a). Rock strength determination based on rock drillability index and drilling specific energy: Numerical simulation using discrete element method. IEEE Access, 9, 43923–43937.

    Article  Google Scholar 

  • Yu, B. S., Zhang, K., Niu, G. G., & Xue, X. R. (2021b). Real-time rock strength determination based on rock drillability index and drilling specific energy: An experimental study. Bulletin of Engineering Geology and the Environment, 80, 3589–3603.

    Article  Google Scholar 

  • Yu, L., Peng, H. W., Zhang, Y., & Li, G. W. (2021c). Mechanical test of granite with multiple water–thermal cycles. Geothermal Energy, 9(1), 2.

    Article  Google Scholar 

  • Zhang, B., Tian, H., Dou, B., Zheng, J., Chen, J., Zhu, Z. N., & Liu, H. W. (2021). Macroscopic and microscopic experimental research on granite properties after high-temperature and water-cooling cycles. Geothermics., 93, 102079.

    Article  Google Scholar 

  • Zhang, W., Sun, Q., Hao, S., Geng, J., & Lv, C. (2016). Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Applied Thermal Engineering, 98, 1297–1304.

    Article  Google Scholar 

  • Zhao, Y., Wan, S., Feng, Z., Xu, J., & Liang, H. (2017). Evolution of mechanical properties of granite at high temperature and high pressure. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 3(2), 199–210.

    Article  Google Scholar 

  • Zhu, D., Jing, H. W., Yin, Q., Ding, S. X., & Zhang, J. H. (2020a). Mechanical characteristics of granite after heating and water-cooling cycles. Rock Mechanics and Rock Engineering, 53(4), 2015–2025.

    Article  Google Scholar 

  • Zhu, Z. N., Tian, H., Mei, G., Jiang, G. S., & Dou, B. (2020b). Experimental investigation on physical and mechanical properties of thermal cycling granite by water-cooling. Acta Geotechnica, 15(5), 1881–1893.

    Article  Google Scholar 

  • Zou, J. Q., Han, J. H., & Yang, W. B. (2020). Investigating the influences of indentation hardness and brittleness of rock-like material on its mechanical crushing behaviors. Mathematical Problems in Engineering, 2020, 4713532.

    Article  Google Scholar 

Download references

Acknowledgments

This work is jointly supported by National Natural Science Foundation of China (No. 41602374 and No. 41674180), the Fundamental Research Funds for the Central Universities-Cradle Plan for 2017 (Grant No. CUGL170207) and the National Key Research and Development Program of China (No. 2019YFB1504201, No. 2019YFB1504203 and No. 2019YFB1504204). We are also grateful to the 3Gdeep group (Department of Civil Engineering, Monash University, Australia) for their help in providing valuable suggestions on English polishing and manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosheng Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Zhu, Z., Ranjith, P.G. et al. Experimental Investigation of Drillability Indices of Thermal Granite After Water-Cooling Treatment. Nat Resour Res 30, 4621–4640 (2021). https://doi.org/10.1007/s11053-021-09926-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09926-1

Keywords

Navigation