Skip to main content

Advertisement

Log in

Identification of Suitable Hydrological Models for Streamflow Assessment in the Kangsabati River Basin, India, by Using Different Model Selection Scores

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The increasing demand for water in developing countries, like India, requires efficient water management and resource allocation. This is crucial to accurately assess and predict hydrological processes such as streamflow, drought, and flood. However, simulations of these hydrologic processes from various hydrological models differ in their accuracy. By analyzing different characteristics of hydrological models, selection scores can be used to select the best model for the intended purpose based on their inherit strengths (i.e., some models are better for streamflow prediction). In this study, 13 different criteria were used for the model selection scores including temporal and spatial resolutions, and processes involved. Thereafter, based on different scores, we selected two different hydrological models for streamflow prediction in the Kangsabati River Basin (KRB) in eastern India, namely (1) Génie Rural à 4 paramètres Journalier (GR4J), a conceptual model, and (2) Variable Infiltration Capacity (VIC), a semi-distributed model. The models were calibrated against the daily observed streamflow at upper KRB (Reservoir) and lower KRB (Mohanpur) from 2000 to 2006 and validated during the period from 2008 to 2010. Despite the differences in model structure and data used, both models simulated streamflow at a daily time scale with Nash–Sutcliffe coefficient of 0.71–0.82 for the VIC model and 0.63–0.71 for the GR4J. Due to the simpler structure, parsimonious nature, fewer parameters, and reasonable accuracy, the results suggest that a conceptual rainfall—runoff model like GR4J can be used in data-deficient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Availability of data and material

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E., & Rasmussen, J. (1986). An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 87(1–2), 45–59.

    Google Scholar 

  • Adamala, S., & Srivastava, A. (2018). Comparative evaluation of daily evapotranspiration using artificial neural network and variable infiltration capacity models. Agricultural Engineering International: CIGR Journal, 20(1).

  • Addor, N., & Melsen, L. (2019). Legacy, rather than adequacy, drives the selection of hydrological models. Water Resources Research, 55(1), 378–390.

    Google Scholar 

  • Anctil, F., Perrin, C., & Andréassian, V. (2004). Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models. Environmental Modelling & Software, 19(4), 357–368.

    Google Scholar 

  • Anshuman, A., Kunnath-Poovakka, A., & Eldho, T. (2019). Towards the use of conceptual models for water resource assessment in Indian tropical watersheds under monsoon-driven climatic conditions. Environmental Earth Sciences, 78(9), 1–15.

    Google Scholar 

  • Arnell, N. W. (1999). Climate change and global water resources. Global Environmental Change, 9, S31–S49.

    Google Scholar 

  • Beven, K. (1989). Changing ideas in hydrology—the case of physically-based models. Journal of Hydrology, 105(1–2), 157–172.

    Google Scholar 

  • Beven, K., Kirkby, M., Schofield, N., & Tagg, A. (1984). Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments. Journal of Hydrology, 69(1–4), 119–143.

    Google Scholar 

  • Bhave, A. G., Mishra, A., & Raghuwanshi, N. S. (2014). A combined bottom-up and top-down approach for assessment of climate change adaptation options. Journal of Hydrology, 518, 150–161.

    Google Scholar 

  • Blondin, C. (1991). Parameterization of land-surface processes in numerical weather prediction. In Land Surface Evaporation (pp. 31–54). New York, NY: Springer.

    Google Scholar 

  • Blöschl, G., Bierkens, M. F., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, H. H., & Sivapalan, M. (2019). Twenty-three unsolved problems in hydrology (UPH)–a community perspective. Hydrological Sciences Journal, 64(10), 1141–1158.

    Google Scholar 

  • Bretreger, D., Yeo, I.-Y., Hancock, G., & Willgoose, G. (2020). Monitoring irrigation using landsat observations and climate data over regional scales in the Murray-Darling Basin. Journal of Hydrology, 590, 125356.

    Google Scholar 

  • Carpenter, T. M., & Georgakakos, K. P. (2006). Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. Journal of Hydrology, 329(1–2), 174–185.

    Google Scholar 

  • Chawla, I., & Mujumdar, P. (2018). Partitioning uncertainty in streamflow projections under nonstationary model conditions. Advances in Water Resources, 112, 266–282.

    Google Scholar 

  • Chen, J., Shi, H., Sivakumar, B., & Peart, M. R. (2016). Population, water, food, energy and dams. Renewable and Sustainable Energy Reviews, 56, 18–28.

    Google Scholar 

  • Chiew, F., Stewardson, M., & McMahon, T. (1993). Comparison of six rainfall-runoff modelling approaches. Journal of Hydrology, 147(1–4), 1–36.

    Google Scholar 

  • Criss, R. E., & Winston, W. E. (2008). Do Nash values have value? Discussion and alternate proposals. Hydrological Processes: An International Journal, 22(14), 2723–2725.

    Google Scholar 

  • Cunderlik, J. (2003). Hydrologic model selection for the CFCAS project: assessment of water resources risk and vulnerability to changing climatic conditions. Department of Civil and Environmental Engineering, The University of Western Ontario.

  • Dash, S. S., Sahoo, B., & Raghuwanshi, N. S. (2020). A novel embedded pothole module for soil and water assessment tool (SWAT) improving streamflow estimation in paddy-dominated catchments. Journal of Hydrology, 588, 125103.

    Google Scholar 

  • De Lannoy, G. J., Houser, P. R., Pauwels, V. R., & Verhoest, N. E. (2006). Assessment of model uncertainty for soil moisture through ensemble verification. Journal of Geophysical Research: Atmospheres, 111(D10).

  • Deb, P., & Kiem, A. S. (2020). Evaluation of rainfall–runoff model performance under non-stationary hydroclimatic conditions. Hydrological Sciences Journal, 65(10), 1667–1684.

    Google Scholar 

  • Deckers, D. L., Booij, M. J., Rientjes, T. H., & Krol, M. S. (2010). Catchment variability and parameter estimation in multi-objective regionalisation of a rainfall–runoff model. Water Resources Management, 24(14), 3961–3985.

    Google Scholar 

  • Demaria, E. M., Nijssen, B., & Wagener, T. (2007). Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model. Journal of Geophysical Research: Atmospheres, 112(D11).

  • Dhar, S., & Mazumdar, A. (2009). Hydrological modelling of the Kangsabati river under changed climate scenario: Case study in India. Hydrological Processes: An International Journal, 23(16), 2394–2406.

    Google Scholar 

  • Duan, Q., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501–521.

    Google Scholar 

  • Dutta, P., & Sarma, A. K. (2021). Hydrological modeling as a tool for water resources management of the data-scarce Brahmaputra basin. Journal of Water and Climate Change, 12(1), 152–165.

    Google Scholar 

  • Elbeltagi, A., Aslam, M. R., Malik, A., Mehdinejadiani, B., Srivastava, A., Bhatia, A. S., & Deng, J. (2020). The impact of climate changes on the water footprint of wheat and maize production in the Nile Delta, Egypt. Science of the Total Environment, 743, 140770.

    Google Scholar 

  • Elbeltagi, A., Kumari, N., Dharpure, J. K., Mokhtar, A., Alsafadi, K., Kumar, M., Mehdinejadiani, B., Ramezani Etedali, H., Brouziyne, Y., & Islam, T. (2021). Prediction of combined terrestrial evapotranspiration index (CTEI) over large river basin based on machine learning approaches. Water, 13(4), 547.

    Google Scholar 

  • Fakharizadehshirazi, E., Sabziparvar, A. A., & Sodoudi, S. (2019). Long-term spatiotemporal variations in satellite-based soil moisture and vegetation indices over Iran. Environmental Earth Sciences, 78(12), 1–14.

    Google Scholar 

  • Franchini, M., & Pacciani, M. (1991). Comparative analysis of several conceptual rainfall-runoff models. Journal of Hydrology, 122(1–4), 161–219.

    Google Scholar 

  • Gao, H., Tang, Q., Shi, X., Zhu, C., Bohn, T., Su, F., Pan, M., Sheffield, J., Lettenmaier, D., & Wood, E. (2010). Water budget record from Variable Infiltration Capacity (VIC) model. Rapport Version 1.2, (Vic), 57.

  • Garg, V., Aggarwal, S., Gupta, P. K., Nikam, B. R., Thakur, P. K., Srivastav, S., & Kumar, A. S. (2017). Assessment of land use land cover change impact on hydrological regime of a basin. Environmental Earth Sciences, 76(18), 1–17.

    Google Scholar 

  • Ghimire, U., Srinivasan, G., & Agarwal, A. (2019). Assessment of rainfall bias correction techniques for improved hydrological simulation. International Journal of Climatology, 39(4), 2386–2399.

    Google Scholar 

  • Grayson, R. B., Moore, I. D., & Mcmahon, T. A. (1992). Physically based hydrologic modeling: 1. A terrain-based model for investigative purposes. Water Resources Research, 28(10), 2639–2658.

    Google Scholar 

  • Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., & Mao, Y. (2018). The Variable Infiltration Capacity model version 5 (VIC-5): Infrastructure improvements for new applications and reproducibility. Geoscientific Model Development, 11(8), 3481–3496.

    Google Scholar 

  • Immerzeel, W., & Droogers, P. (2008). Calibration of a distributed hydrological model based on satellite evapotranspiration. Journal of Hydrology, 349(3–4), 411–424.

    Google Scholar 

  • Jackson, T. J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., Doriaswamy, P., & Hunt, E. R. (2004). Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, 92(4), 475–482.

    Google Scholar 

  • Joseph, J., Ghosh, S., Pathak, A., & Sahai, A. (2018). Hydrologic impacts of climate change: Comparisons between hydrological parameter uncertainty and climate model uncertainty. Journal of Hydrology, 566, 1–22.

    Google Scholar 

  • Kumar, R., Singh, R., & Sharma, K. (2005). Water resources of India. Current science, 794–811.

  • Kumar, U., Sahoo, B., Chatterjee, C., & Raghuwanshi, N. S. (2020). Evaluation of Simplified Surface Energy Balance Index (S-SEBI) method for estimating actual evapotranspiration in kangsabati reservoir command using Landsat 8 Imagery. Journal of the Indian Society of Remote Sensing, 48(10), 1421–1432.

    Google Scholar 

  • Kumar, U., Srivastava, A., Kumari, N., Sahoo, B., Chatterjee, C., & Raghuwanshi, N. S. (2021). Evaluation of Spatio-Temporal Evapotranspiration Using Satellite-Based Approach and Lysimeter in the Agriculture Dominated Catchment. Journal of the Indian Society of Remote Sensing, 1–12.

  • Kumari, Acharya, S., Renzullo, L., & Yetemen, O. (2019). Applying rainfall ensembles to explore hydrological uncertainty. In 23rd International Congress on Modelling and Simulation (pp. 1–6). Canberra, Australia.

  • Kumari, N., & Srivastava, A. (2020). An approach for estimation of evapotranspiration by standardizing parsimonious method. Agricultural Research, 9(3), 301–309.

    Google Scholar 

  • Kumari, N., Yetemen, O., Srivastava, A., Rodriguez, J. F., & Saco, P. M. (2019). The spatio-temporal NDVI analysis for two different Australian catchments. In Proceedings of the 23rd International Congress on Modeling and Simulation (MODSIM2019) (pp. 958–964). Canberra, Australia.

  • Kumari, N., Saco, P. M., Rodriguez, J. F., Johnstone, S. A., Srivastava, A., Chun, K. P., & Yetemen, O. (2020). The Grass Is Not Always Greener on the Other Side: Seasonal Reversal of Vegetation Greenness in Aspect-Driven Semiarid Ecosystems. Geophysical Research Letters, 47(15), e2020GL088918. https://doi.org/10.1029/2020GL088918

    Article  Google Scholar 

  • Li, Z., Xu, Z., & Li, Z. (2011). Performance of WASMOD and SWAT on hydrological simulation in Yingluoxia watershed in northwest of China. Hydrological Processes, 25(13), 2001–2008.

    Google Scholar 

  • Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, 99(D7), 14415–14428.

    Google Scholar 

  • Liang, X., Wood, E. F., & Lettenmaier, D. P. (1996). Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global and Planetary Change, 13(1–4), 195–206.

    Google Scholar 

  • Lohmann, D., & NOLTE-HOLUBE, R., & Raschke, E. . (1996). A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus A, 48(5), 708–721.

    Google Scholar 

  • Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., & Nijssen, B. (2002). A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. Journal of Climate, 15(22), 3237–3251.

    Google Scholar 

  • Maza, M., Srivastava, A., Bisht, D. S., Raghuwanshi, N. S., Bandyopadhyay, A., Chatterjee, C., & Bhadra, A. (2020). Simulating hydrological response of a monsoon dominated reservoir catchment and command with heterogeneous cropping pattern using VIC model. Journal of Earth System Science, 129(1), 1–16.

    Google Scholar 

  • Mittal, N., Mishra, A., Singh, R., Bhave, A. G., & van der Valk, M. (2014). Flow regime alteration due to anthropogenic and climatic changes in the Kangsabati River, India. Ecohydrology & Hydrobiology, 14(3), 182–191.

    Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.

    Google Scholar 

  • Narendra, H., Eldho, T., & Subimal, G. (2017). Hydrological simulation of a large catchment using the variable infiltration capacity model. In Development of water resources in India (pp. 19–30). Springer.

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—a discussion of principles. Journal of Hydrology, 10(3), 282–290.

    Google Scholar 

  • Nijssen, B., O’Donnell, G. M., Lettenmaier, D. P., Lohmann, D., & Wood, E. F. (2001). Predicting the discharge of global rivers. Journal of Climate, 14(15), 3307–3323.

    Google Scholar 

  • Nyeko, M. (2015). Hydrologic modelling of data scarce basin with SWAT model: Capabilities and limitations. Water Resources Management, 29(1), 81–94.

    Google Scholar 

  • Pai, D., Sridhar, L., Badwaik, M., & Rajeevan, M. (2015). Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25× 0.25) gridded rainfall data set. Climate Dynamics, 45(3), 755–776.

    Google Scholar 

  • Paul, P. K., Kumari, N., Panigrahi, N., Mishra, A., & Singh, R. (2018). Implementation of cell-to-cell routing scheme in a large scale conceptual hydrological model. Environmental Modelling & Software, 101, 23–33.

    Google Scholar 

  • Perrin, C., Michel, C., & Andréassian, V. (2001). Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. Journal of Hydrology, 242(3–4), 275–301.

    Google Scholar 

  • Perrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1–4), 275–289.

    Google Scholar 

  • Raghuwanshi, N. S., Singh, R., & Reddy, L. (2006). Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India. Journal of Hydrologic Engineering, 11(1), 71–79.

    Google Scholar 

  • Raje, D., Priya, P., & Krishnan, R. (2014). Macroscale hydrological modelling approach for study of large scale hydrologic impacts under climate change in Indian river basins. Hydrological Processes, 28(4), 1874–1889.

    Google Scholar 

  • Rajeevan, M., Bhate, J., Kale, J., & Lal, B. (2006). High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Current science, 296–306.

  • Refsgaard, J. C., & Knudsen, J. (1996). Operational validation and intercomparison of different types of hydrological models. Water Resources Research, 32(7), 2189–2202.

    Google Scholar 

  • Sahana, M., & Patel, P. P. (2019). A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India. Environmental Earth Sciences, 78(10), 1–27.

    Google Scholar 

  • Sahoo, B., Chatterjee, C., Raghuwanshi, N. S., Singh, R., & Kumar, R. (2006). Flood estimation by GIUH-based Clark and Nash models. Journal of Hydrologic Engineering, 11(6), 515–525.

    Google Scholar 

  • Samaniego, L., Kumar, R., & Zink, M. (2013). Implications of parameter uncertainty on soil moisture drought analysis in Germany. Journal of Hydrometeorology, 14(1), 47–68.

    Google Scholar 

  • Saxena, R. (2012). Impacts of Kangsabati Project, India. In Impacts of Large Dams: A Global Assessment (pp. 277–298). Springer.

  • Sezen, C., & Partal, T. (2019). The utilization of a GR4J model and wavelet-based artificial neural network for rainfall–runoff modelling. Water Supply, 19(5), 1295–1304.

    Google Scholar 

  • Sharma, T., Gusain, A., & Karmakar, S. (2019). Future hydrologic scenarios in India under climate change. In Climate Change Signals and Response (pp. 39–59). Springer.

  • Simonovic, S. P. (2002). World water dynamics: Global modeling of water resources. Journal of Environmental Management, 66(3), 249–267.

    Google Scholar 

  • Singh, V. P., & Woolhiser, D. A. (2002). Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 7(4), 270–292.

    Google Scholar 

  • Singh, R., Subramanian, K., & Refsgaard, J. (1999). Hydrological modelling of a small watershed using MIKE SHE for irrigation planning. Agricultural Water Management, 41(3), 149–166.

    Google Scholar 

  • Sivapalan, M., & Woods, R. A. (1995). Evaluation of the effects of general circulation models’ subgrid variability and patchiness of rainfall and soil moisture on land surface water balance fluxes. Hydrological Processes, 9(5–6), 697–717.

    Google Scholar 

  • Srivastava, A., Sahoo, B., Raghuwanshi, N. S., & Singh, R. (2017). Evaluation of variable-infiltration capacity model and MODIS-terra satellite-derived grid-scale evapotranspiration estimates in a River Basin with Tropical Monsoon-Type climatology. Journal of Irrigation and Drainage Engineering, 143(8), 04017028.

    Google Scholar 

  • Srivastava, A., Sahoo, B., Raghuwanshi, N. S., & Chatterjee, C. (2018). Modelling the dynamics of evapotranspiration using Variable Infiltration Capacity model and regionally calibrated Hargreaves approach. Irrigation Science, 36(4), 289–300.

    Google Scholar 

  • Srivastava, A., Yetemen, O., Kumari, N., & Saco, P. (2019). Aspect-controlled spatial and temporal soil moisture patterns across three different latitudes. In Proc. of the 23rd International Congress on Modeling and Simulation (MODSIM2019) (pp. 979–985). Canberra, Australia.

  • Srivastava, A., Kumari, N., & Maza, M. (2020). Hydrological response to agricultural land use heterogeneity using variable infiltration capacity model. Water Resources Management, 34(12), 3779–3794.

    Google Scholar 

  • Srivastava, A., Saco, P. M., Rodriguez, J. F., Kumari, N., Chun, K. P., & Yetemen, O. (2021). The role of landscape morphology on soil moisture variability in semi-arid ecosystems. Hydrological Processes, 35(1), e13990.

    Google Scholar 

  • Steel, R. G. D., & Torrie, J. H. (1960). Principles and procedures of statistics. Principles and procedures of statistics.

  • Tatsumi, K., & Yamashiki, Y. (2015). Effect of irrigation water withdrawals on water and energy balance in the Mekong River Basin using an improved VIC land surface model with fewer calibration parameters. Agricultural Water Management, 159, 92–106.

    Google Scholar 

  • Teuling, A. J., Uijlenhoet, R., van den Hurk, B., & Seneviratne, S. I. (2009). Parameter sensitivity in LSMs: An analysis using stochastic soil moisture models and ELDAS soil parameters. Journal of Hydrometeorology, 10(3), 751–765.

    Google Scholar 

  • Tian, Y., Xu, Y.-P., & Zhang, X.-J. (2013). Assessment of climate change impacts on river high flows through comparative use of GR4J, HBV and Xinanjiang models. Water Resources Management, 27(8), 2871–2888.

    Google Scholar 

  • Todini, E. (1996). The ARNO rainfall—runoff model. Journal of Hydrology, 175(1–4), 339–382.

    Google Scholar 

  • UNDP, B. S. (2006). Power, Poverty and the Global Water Crisis, United Nations Development Programme. Human development report, 2006.

  • Vaze, J., Jordan, P., Beecham, R., Frost, A., & Summerell, G. (2011). Guidelines for rainfall-runoff modelling: towards best practice model application.

  • Vaze, J., Chiew, F., Hughes, D., & Andréassian, V. (2015). Preface: Hs02–hydrologic non-stationarity and extrapolating models to predict the future. Proceedings of the International Association of Hydrological Sciences, 371, 1–2.

    Google Scholar 

  • Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: Vulnerability from climate change and population growth. Science, 289(5477), 284–288.

    Google Scholar 

  • Xie, Z., Yuan, F., Duan, Q., Zheng, J., Liang, M., & Chen, F. (2007). Regional parameter estimation of the VIC land surface model: Methodology and application to river basins in China. Journal of Hydrometeorology, 8(3), 447–468.

    Google Scholar 

  • Xu, C.-Y., & Singh, V. P. (1998). A review on monthly water balance models for water resources investigations. Water Resources Management, 12(1), 20–50.

    Google Scholar 

  • Xue, X., Zhang, K., Hong, Y., Gourley, J. J., Kellogg, W., McPherson, R. A., Wan, Z., & Austin, B. N. (2016). New multisite cascading calibration approach for hydrological models: Case study in the red river basin using the VIC model. Journal of Hydrologic Engineering, 21(2), 05015019.

    Google Scholar 

  • Ye, W., Bates, B., Viney, N., Sivapalan, M., & Jakeman, A. (1997). Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments. Water Resources Research, 33(1), 153–166.

    Google Scholar 

  • Zhang, W., Jin, F.-F., Zhao, J.-X., Qi, L., & Ren, H.-L. (2013). The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in Southwest China. Journal of Climate, 26(21), 8392–8405.

    Google Scholar 

  • Zhang, Z., Zhang, Q., Singh, V. P., & Shi, P. (2018). River flow modelling: Comparison of performance and evaluation of uncertainty using data-driven models and conceptual hydrological model. Stochastic Environmental Research and Risk Assessment, 32(9), 2667–2682.

    Google Scholar 

  • Zhao, R. (1980). The Xinganjiang Model. Hydrological Forecasting Proceedings Oxford Symposium, IASH 129

Download references

Acknowledgments

We thank the Editor-in-Chief, Associate Editor and two anonymous reviewers for their constructive edits/comments, which helped us improve this paper, considerably. We acknowledge the support of the CWC, Govt. of India, for providing necessary discharge data to establish the model. We also acknowledge the Indian Meteorological Department for providing meteorological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikul Kumari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, N., Srivastava, A., Sahoo, B. et al. Identification of Suitable Hydrological Models for Streamflow Assessment in the Kangsabati River Basin, India, by Using Different Model Selection Scores. Nat Resour Res 30, 4187–4205 (2021). https://doi.org/10.1007/s11053-021-09919-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09919-0

Keywords

Navigation