Skip to main content

Advertisement

Log in

A New Approach for Regional Groundwater Level Simulation: Clustering, Simulation, and Optimization

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, a new 3-stage approach that consists of clustering, simulation, and optimization stages is proposed for the simulation of groundwater level (GWL) in an arid region of eastern Iran. In the first stage, K-means clustering was used to divide the study aquifer into five different clusters based on precipitation, water recharge, water discharge, transmissivity, earth level, and water table. In the second stage, to simulate GWL in each cluster, several input variables, such as water level at the previous month, aquifer discharge, aquifer recharge, evaporation, temperature, and precipitation, were used in the form of various input patterns that were fed to an artificial neural network (ANN). Finally, in the third stage, two advanced optimization methods, i.e., particle swarm optimization (PSO) and whale optimization algorithm (WOA), were utilized to optimize the ANN results. Various patterns were identified as suitable clusters based on the studied models. A pattern including water level at the previous month, aquifer discharge, aquifer recharge, and precipitation was identified as the best model for four clusters, except for cluster 3. The validation with root mean squared error (RMSE), mean absolute percentage error (MAPE), and Nash Sutcliffe index (NSE) revealed RMSE = 0.01, NSE = 0.97, and MAPE = 0.13 for the first cluster, RMSE = 0.011, NSE = 0.99, and MAPE = 0.22 for the second cluster, RMSE = 0.003, NSE = 0.99, and MAPE = 0.30 for the fourth cluster, and RMSE = 0.001, NSE = 0.98, and MAPE = 0.05 for the fifth cluster. For the third cluster, a pattern including water level at the previous month, aquifer discharge, and aquifer recharge was identified as the best model resulting in RMSE = 0.006, NSE = 0.99, and MAPE = 0.05. Finally, according to the results, the ANN–PSO model was applied to three clusters, while the ANN–WOA model was applied to the remaining clusters. In general, this study showed that optimization algorithms can improve the simulation accuracy of ANN, and the efficient use of each method depends on the clustering type. The application of the approach proposed here can be extended to other aquifers that have a relatively large area and limited data availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Abd El Aziz, M., Ewees, A. A., & Hassanien, A. E. (2017). Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Systems with Applications, 83, 242–256.

    Article  Google Scholar 

  • Aljarah, I., Faris, H., & Mirjalili, S. (2018). Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Computing, 22(1), 1–15.

    Article  Google Scholar 

  • Anand, A., & Suganthi, L. (2020). Forecasting of electricity demand by hybrid ANN-PSO models. In Deep learning and neural networks: Concepts, methodologies, tools, and applications (pp. 865–882). IGI Global.

  • Arumugam, M. S., Rao, M. V. C., & Chandramohan, A. (2008). A new and improved version of particle swarm optimization algorithm with global–local best parameters. Knowledge and Information Systems, 16(3), 331–357.

    Article  Google Scholar 

  • Asefpour Vakilian, K. (2020). Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses. Scientific Reports, 10, 3041.

    Article  Google Scholar 

  • Banadkooki, F. B., Ehteram, M., Ahmed, A. N., Teo, F. Y., Fai, C. M., Afan, H. A., Sapitang, M., & El-Shafie, A. (2020). Enhancement of groundwater-level prediction using an integrated machine learning model optimized by whale algorithm. Natural Resources Research, 29(5), 3233–3252.

    Article  Google Scholar 

  • Bisht, S., & Paul, A. (2013). Document clustering: A review. International Journal of Computer Applications73(11), 26–33.

    Article  Google Scholar 

  • Chen, W., Hong, H., Panahi, M., Shahabi, H., Wang, Y., Shirzadi, A., Pirasteh, S., Alesheikh, A. A., Khosravi, K., Panahi, S., & Rezaie, F. (2019). Spatial prediction of landslide susceptibility using GIS-based data mining techniques of ANFIS with whale optimization algorithm (WOA) and grey wolf optimizer (GWO). Applied Sciences, 9(18), 3755.

    Article  Google Scholar 

  • Chen, X. L., Fu, J. P., Yao, J. L., & Gan, J. F. (2018). Prediction of shear strength for squat RC walls using a hybrid ANN–PSO model. Engineering with Computers, 34(2), 367–383.

    Article  Google Scholar 

  • Coulibaly, P., Anctil, F., Aravena, R., & Bobée, B. (2001). Artificial neural network modeling of water table depth fluctuations. Water Resources Research, 37(4), 885–896.

    Article  Google Scholar 

  • Dehariya, V. K., Shrivastava, S. K., & Jain, R. C. (2010). Clustering of image data set using k-means and fuzzy k-means algorithms. In 2010 International conference on computational intelligence and communication networks (pp. 386–391). IEEE.

  • Ebrahimi, H., & Rajaee, T. (2017). Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine. Global and Planetary Change, 148, 181–191.

    Article  Google Scholar 

  • Gaur, S., Ch, S., Graillot, D., Chahar, B. R., & Kumar, D. N. (2013). Application of artificial neural networks and particle swarm optimization for the management of groundwater resources. Water Resources Management, 27(3), 927–941.

    Article  Google Scholar 

  • Haykin, S. (1999). Neural neural network and its application in IR, a comprehensive foundation, Upper Sadle River . New Jersy: Prentice Hall, 13, 775–781.

    Google Scholar 

  • Heil, J., Häring, V., Marschner, B., & Stumpe, B. (2019). Advantages of fuzzy k-means over k-means clustering in the classification of diffuse reflectance soil spectra: A case study with West African soils. Geoderma, 337, 11–21.

    Article  Google Scholar 

  • Heydari, A., Astiaso Garcia, D., Keynia, F., Bisegna, F., & De Santoli, L. (2019). Hybrid intelligent strategy for multifactor influenced electrical energy consumption forecasting. Energy Sources, Part B: Economics, Planning, and Policy, 14(10–12), 341–358.

    Article  Google Scholar 

  • Hopfield, J. J. (1988). Artificial neural networks. IEEE Circuits and Devices Magazine, 4(5), 3–10.

    Article  Google Scholar 

  • Jaafari, A., Panahi, M., Pham, B. T., Shahabi, H., Bui, D. T., Rezaie, F., & Lee, S. (2019a). Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. CATENA, 175, 430–445.

    Article  Google Scholar 

  • Jaafari, A., Termeh, S. V. R., & Bui, D. T. (2019b). Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability. Journal of Environmental Management, 243, 358–369.

    Article  Google Scholar 

  • Jaafari, A., Zenner, E. K., Panahi, M., & Shahabi, H. (2019c). Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agricultural and Forest Meteorology, 266, 198–207.

    Article  Google Scholar 

  • Jalalkamali, A., Sedghi, H., & Manshouri, M. (2011). Monthly groundwater level prediction using ANN and neuro-fuzzy models: A case study on Kerman plain, Iran. Journal of Hydroinformatics, 13(4), 867–876.

    Article  Google Scholar 

  • Javadi, S., Saatsaz, M., Shahdany, M. H., Neshat, A., Milan, S., & Akbari, S. (2021). A new hybrid framework of site selection for groundwater recharge. Geoscience Frontiers, 12(4), 101144.

    Article  Google Scholar 

  • Kardan Moghaddam, H., Kardan Moghaddam, H., Kivi, Z. R., Bahreinimotlagh, M., & Alizadeh, M. J. (2019). Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundwater for Sustainable Development, 9, 100237.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp 1942–1948). IEEE.

  • Khaki, M., Yusoff, I., & Islami, N. (2015). Simulation of groundwater level through artificial intelligence system. Environmental Earth Sciences, 73(12), 8357–8367.

    Article  Google Scholar 

  • Khedri, A., Kalantari, N., & Vadiati, M. (2020). Comparison study of artificial intelligence method for short term groundwater level prediction in the northeast Gachsaran unconfined aquifer. Water Supply, 20(3), 909–921.

    Article  Google Scholar 

  • Kombo, O. H., Kumaran, S., Sheikh, Y. H., Bovim, A., & Jayavel, K. (2020). Long-term groundwater level prediction model based on hybrid KNN-RF technique. Hydrology, 7(3), 59.

    Article  Google Scholar 

  • Lallahem, S., Mania, J., Hani, A., & Najjar, Y. (2005). On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology, 307(1–4), 92–111.

    Article  Google Scholar 

  • Ling, Y., Zhou, Y., & Luo, Q. (2017). Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access, 5, 6168–6186.

    Article  Google Scholar 

  • Maroufpoor, S., Bozorg-Haddad, O., & Maroufpoor, E. (2020). Reference evapotranspiration estimating based on optimal input combination and hybrid artificial intelligent model: Hybridization of artificial neural network with grey wolf optimizer algorithm. Journal of Hydrology, 588, 125060.

    Article  Google Scholar 

  • Milan, S. G., Roozbahani, A., Azar, N. A., & Javadi, S. (2021). Development of adaptive neuro fuzzy inference system–evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitation. Journal of Hydrology 126258.

  • Milan, S. G., Roozbahani, A., & Banihabib, M. E. (2018). Fuzzy optimization model and fuzzy inference system for conjunctive use of surface and groundwater resources. Journal of Hydrology, 566, 421–434.

    Article  Google Scholar 

  • Ministry of power (2017). Water Resources Balances for Birjand aquifer area, Iran water resource

  • Mirarabi, A., Nassery, H. R., Nakhaei, M., Adamowski, J., Akbarzadeh, A. H., & Alijani, F. (2019). Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems. Environmental Earth Sciences, 78(15), 489.

    Article  Google Scholar 

  • Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Article  Google Scholar 

  • Moghaddam, H. K., Milan, S. G., Kayhomayoon, Z., & Azar, N. A. (2021). The prediction of aquifer groundwater level based on spatial clustering approach using machine learning. Environmental Monitoring and Assessment, 193(4), 1–20.

    Google Scholar 

  • Mohammadi, B., & Mehdizadeh, S. (2020). Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agricultural Water Management, 106145.

  • Mohammadrezapour, O., Kisi, O., & Pourahmad, F. (2020). Fuzzy c-means and K-means clustering with genetic algorithm for identification of homogeneous regions of groundwater quality. Neural Computing and Applications, 32(8), 3763–3775.

    Article  Google Scholar 

  • Nayak, J., Kanungo, D. P., Naik, B., & Behera, H. S. (2016). Evolutionary improved swarm-based hybrid K-means algorithm for cluster analysis. In Proceedings of the second international conference on computer and communication technologies (pp. 343–352). Springer

  • Nguyen, P. T., Ha, D. H., Avand, M., Jaafari, A., Nguyen, H. D., Al-Ansari, N., Phong, T. V., Sharma, R., Kumar, R., Le, H. V., & Ho, L. S. (2020a). Soft computing ensemble models based on logistic regression for groundwater potential mapping. Applied Sciences, 10(7), 2469.

    Article  Google Scholar 

  • Nguyen, P. T., Ha, D. H., Jaafari, A., Nguyen, H. D., Van Phong, T., Al-Ansari, N., Prakash, I., Le, H. V., & Pham, B. T. (2020b). Groundwater potential mapping combining artificial neural network and real adaboost ensemble technique: The DakNong Province case-study. Vietnam. International Journal of Environmental Research and Public Health, 17(7), 2473.

    Article  Google Scholar 

  • Nhu, V. H., Mohammadi, A., Shahabi, H., Shirzadi, A., Al-Ansari, N., Ahmad, B. B., Chen, W., Khodadadi, M., Ahmadi, M., Khosravi, K., & Jaafari, A. (2020a). Monitoring and assessment of water level fluctuations of the lake urmia and its environmental consequences using multitemporal landsat 7 etm+ images. International Journal of Environmental Research and Public Health, 17(12), 4210.

    Article  Google Scholar 

  • Nhu, V. H., Shirzadi, A., Shahabi, H., Singh, S. K., Al-Ansari, N., Clague, J. J., Jaafari, A., Chen, W., Miraki, S., Dou, J., & Luu, C. (2020b). Shallow landslide susceptibility mapping: A comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithms. International Journal of Environmental Research and Public Health, 17(8), 2749.

    Article  Google Scholar 

  • Pham, B. T., Jaafari, A., Prakash, I., Singh, S. K., Quoc, N. K., & Bui, D. T. (2019). Hybrid computational intelligence models for groundwater potential mapping. CATENA, 182, 104101.

    Article  Google Scholar 

  • Rajaee, T., Ebrahimi, H., & Nourani, V. (2019). A review of the artificial intelligence methods in groundwater level modeling. Journal of Hydrology, 572, 336–351.

    Article  Google Scholar 

  • Rokach, L., & Maimon, O. (2005). Clustering methods. In Data mining and knowledge discovery handbook (pp. 321–352). Springer

  • Sai, L., & Huajing, F. (2017). A WOA-based algorithm for parameter optimization of support vector regression and its application to condition prognostics. In 2017 36th Chinese control conference (CCC) (pp. 7345–7350). IEEE.

  • Samadianfard, S., Hashemi, S., Kargar, K., Izadyar, M., Mostafaeipour, A., Mosavi, A., Nabipour, N., & Shamshirband, S. (2020). Wind speed prediction using a hybrid model of the multi-layer perceptron and whale optimization algorithm. Energy Reports, 6, 1147–1159.

    Article  Google Scholar 

  • Sarlaki, E., Sharif Paghaleh, A., Kianmehr, M. H., & Asefpour Vakilian, K. (2021). Valorization of lignite wastes into humic acids: Process optimization, energy efficiency and structural features analysis. Renewable Energy, 163, 105–122.

    Article  Google Scholar 

  • Seifi, A., & Soroush, F. (2020). Pan evaporation estimation and derivation of explicit optimized equations by novel hybrid meta-heuristic ANN based methods in different climates of Iran. Computers and Electronics in Agriculture, 173, 105418.

    Article  Google Scholar 

  • Shah, N., & Mahajan, S. (2012). Document clustering: A detailed review. International Journal of Applied Information Systems, 4(5), 30–38.

    Article  Google Scholar 

  • Spina, R. (2006). Optimisation of injection moulded parts by using ANN-PSO approach. Journal of Achievements in Materials and Manufacturing Engineering, 15(1–2), 146–152.

    Google Scholar 

  • Taormina, R., Chau, K. W., & Sethi, R. (2012). Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Engineering Applications of Artificial Intelligence, 25(8), 1670–1676.

    Article  Google Scholar 

  • Toghyani, S., Ahmadi, M. H., Kasaeian, A., & Mohammadi, A. H. (2016). Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine. International Journal of Ambient Energy, 37(5), 456–468.

    Article  Google Scholar 

  • Vaheddoost, B., Guan, Y., & Mohammadi, B. (2020). Application of hybrid ANN-whale optimization model in evaluation of the field capacity and the permanent wilting point of the soils. Environmental Science and Pollution Research, 27(12), 13131–13141.

    Article  Google Scholar 

  • Xu, Z., Huang, X., Lin, L., Wang, Q., Liu, J., Yu, K., & Chen, C. (2020). BP neural networks and random forest models to detect damage by Dendrolimus punctatus Walker. Journal of Forestry Research, 31(1), 107–121.

    Article  Google Scholar 

  • Zhang, C. L., Jing, Z. L., Pan, H., Jin, B., & Li, Z. X. (2013). Robust visual tracking using discriminative stable regions and K-means clustering. Neurocomputing, 111, 131–143.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Kayhomayoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayhomayoon, Z., Ghordoyee Milan, S., Arya Azar, N. et al. A New Approach for Regional Groundwater Level Simulation: Clustering, Simulation, and Optimization. Nat Resour Res 30, 4165–4185 (2021). https://doi.org/10.1007/s11053-021-09913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09913-6

Keywords

Navigation