Skip to main content

Advertisement

Log in

Gravimetric Determination of Storage Coefficient and Storage Change of Groundwater in an Uncontrolled and Unconfined Aquifer

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Adequate management of water resources in aquifer systems implies knowledge of the different parameters of hydrological balance. However, only limited data exist for many aquifers, which lead to the production of hydrological models with high levels of uncertainty. This research estimates spatially and temporally the groundwater storage change and the storage coefficient in unconfined aquifers and under uncontrolled conditions by means of gravimetric data and validates the estimates by two procedures based on piezometric data. The application of the three procedures was carried out in an aquifer located in the Etla Valley, Oaxaca, Mexico. Piezometric data and gravitational field measurements from October 1996 and May 2018 were employed. Groundwater storage change was calculated via piezometry, residual Bouguer anomaly and gravimetry. The piezometric and gravimetric procedures estimated similar spatial distributions of groundwater recharge and discharge areas but different reductions in groundwater storage volume. The gravimetric method estimated a loss that was 50% lower than that produced by the procedures based on piezometry. The storage coefficient varied spatially in a range between − 0.22 and 0.30, assuming a theoretical relationship between gravimetric and piezometric variations based on the Bouguer slab model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Alaniz-Alvarez, S. A., & Nieto-Samaniego, A. F. (1997). Representación gráfica de los dominios de ruptura y deslizamiento, aplicación a la falla de Oaxaca, México. Revista Mexicana De Ciencias Geológicas, 14(1), 26–37.

    Google Scholar 

  • Belmonte-Jiménez, S. I., Campos-Enríquez, J. O., & Herrera-Barrientos, J. (2003). Determinación de la vulnerabilidad del acuífero del Valle de Etla, Oaxaca, México. Revista Geofísica, 59, 19.

    Google Scholar 

  • Blakely, R. J. (1996). Potential theory in gravity and magnetic applications. Cambridge University Press.

  • Bridget, R. S., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(1), 18–39.

    Article  Google Scholar 

  • Campos-Enriquez, J. O., Belmonte, S. I., Keppie, J. D., Ortega, F., Arzate, J. A., Martínez, J., & Martínez-Serrano, R. G. (2010). Gravity and magnetic survey of the Oaxaca city region: Cenozoic horst-and-graben structure superimposed on the Oaxaca-Juarez terrane boundary, southern Mexico. Journal of South American Earth Sciences, 29(3), 572–585.

    Article  Google Scholar 

  • Castellazzi, P., Martel, R., Galloway, D. L., Longuevergne, L., & Rivera, A. (2016). Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations. Groundwater, 54(6), 768–780.

    Article  Google Scholar 

  • Creutzfeldt, B., Güntner, A., Vorogushyn, S., & Merz, B. (2010). The benefits of gravimeter observations for modelling water storage changes at the field scale. Hydrology and Earth System Sciences, 14(9), 1715–1730.

    Article  Google Scholar 

  • Cruz-Falcón, A., & Vázquez-González, R. (1989). Gravimetry of the Maneadero-Chapultepec Valley, Ensenada, BC, with application to geohydrology. Ciencias Marinas, 15(4), 21–38. (In Spanish).

    Article  Google Scholar 

  • Damiata, B. N., & Lee, T. C. (2006). Simulated gravitational response to hydraulic testing of unconfined aquifers. Journal of Hydrology, 318(1–4), 348–359.

    Article  Google Scholar 

  • De la Rosa, I.C. (2010). Optimal design of a piezometric monitoring network for the aquifer system of the Valles Centrales of Oaxaca. Master’s thesis in Spanish. Instituto Politécnico Nacional, CIIDIR Oaxaca, México.

  • El-Diasty, M. (2016). Groundwater storage change detection using micro-gravimetric technology. Journal of Geophysics and Engineering, 13(3), 259–272.

    Article  Google Scholar 

  • Flores-Márquez, E. L., Chávez, R. E., Martínez-Serrano, R. G., Herrera-Barrientos, J., Tejero-Andrade, A., & Belmonte, S. (2001). Geophysical characterization of the Etla Valley aquifer, Oaxaca, Mexico. Geofisica Internacional, 40(4), 245–257.

    Article  Google Scholar 

  • Flores-Márquez, E. L., Martínez-Serrano, R. G., Chávez, R. E., Crusillo, Y., Jiménez, G., & Campos-Enriquez, J. O. (2008). Numerical modeling of Etla Valley aquifer, Oax, Mexico: Evolution and remediation scenarios E. Geofísica Internacional, 47(1), 27–40.

    Article  Google Scholar 

  • Frappart, F., & Ramillien, G. (2018). Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sensing, 10(6), 829.

    Article  Google Scholar 

  • García-García, L. A. (2014). Computational model of the granular aquifer system of Nazareno Etla, Oaxaca, using Visual Modflow. Master’s thesis in Spanish. Instituto Politécnico Nacional, CIIDIR Oaxaca, México.

  • Gehman, C. L., Harry, D. L., Sanford, W. E., Stednick, J. D., & Beckman, N. A. (2010). Estimating specific yield and storage change in an unconfined aquifer using temporal gravity surveys. Water Resources Research. https://doi.org/10.1029/2007WR006096

    Article  Google Scholar 

  • GEOSOFT Inc. (2007). Oasis Montaj v.6.4.2 (HJ), Standard Edition. Software.

  • Handayani, L., Wardhana, D. D., Hartanto, P., Delinom, R., Bakti, H., & Lubis, R. F. (2018). Gravity survey of groundwater characterization at Labuan Basin. In IOP Conference Series: Earth and Environmental Science (Vol. 118, No. 1, p. 012015). IOP Publishing.

  • Healy, R. W., & Cook, P. G. (2002). Using groundwater levels to estimate recharge. Hydrogeology Journal, 10(1), 91–109.

    Article  Google Scholar 

  • Heath, R. C. (1983). Basic ground-water hydrology (Vol. 2220). US Department of the Interior, US Geological Survey, v. https://doi.org/10.3133/wsp2220

  • Hector, B., Śeguis, L., Hinderer, J., Descloitres, M., Vouillamoz, J. M., Wubda, M., & Moigne, N. L. (2013). Gravity effect of water storage changes in a weathered hard-rock aquifer in West Africa: Results from joint absolute gravity, hydrological monitoring and geophysical prospection. Geophysical Journal International, 194(2), 737–750.

    Article  Google Scholar 

  • Hernández-Sánchez, R. I. (2016). Prospection of groundwater in Valles Centrales of Oaxaca using geophysical methods: gravimetry, magnetometry and electrical resistivity. Master’s thesis in Spanish. Instituto Politécnico Nacional, CIIDIR Oaxaca, México.

  • INEGI (Instituto Nacional de Estadística, Geografía e Informática). (2018). Modelos Digitales de Elevación de Alta Resolución LiDAR, Superficie ASCII, con resolución de 5m. Superficie. Escala: 1:10,000

  • Jacob, T., Bayer, R., Chery, J., Jourde, H., Moigne, N. L., Boy, J. P., & Brunet, P. (2008). Absolute gravity monitoring of water storage variation in a karst aquifer on the larzac plateau (Southern France). Journal of Hydrology, 359(1–2), 105–117.

    Article  Google Scholar 

  • Jacob, T., Bayer, R., Chery, J., & Le Moigne, N. (2010). Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer. Journal of Geophysical Research Solid Earth. https://doi.org/10.1029/2009JB006616

    Article  Google Scholar 

  • Kazama, T., Tamura, Y., Asari, K., Manabe, S., & Okubo, S. (2012). Gravity changes associated with variations in local land-water distributions: Observations and hydrological modeling at Isawa Fan, northern Japan. Earth, Planets and Space, 64(4), 309–331.

    Article  Google Scholar 

  • Koth, K., & Long, A. (2012). Methods for Characterization of Groundwater-storage Changes and Aquifer Properties in the Karstic Madison Aquifer in the Black Hills of South Dakota, 2009–12: U.S. Geological Survey Scientific Investigations Report 2012–5158. http://pubs.usgs.gov/sir/2012/5158/

  • Llovel, W., Becker, M., Cazenave, A., Jevrejeva, S., Alkama, R., Decharme, B., & Beckley, B. (2011). Terrestrial waters and sea level variations on interannual time scale. Global and Planetary Change, 75(1–2), 76–82.

    Article  Google Scholar 

  • Montgomery, L. (1971). Determination of coefficient of storage by use of gravity measurements. Ph.D. dissertation, University of Arizona, Tucson, http://hdl.handle.net/10150/190978

  • Mouyen, M., Longuevergne, L., Chalikakis, K., Mazzilli, N., Ollivier, C., Rosat, S., Hinderer, J., & Champollion, C. (2019). Monitoring of groundwater redistribution in a karst aquifer using a superconducting gravimeter. E3S web of conferences (Vol. 88 p. 03001). Doi: https://doi.org/10.1051/e3sconf/20198803001

  • Naujoks, M., Weise, A., Kroner, C., & Jahr, T. (2008). Detection of small hydrological variations in gravity by repeated observations with relative gravimeters. Journal of Geodesy, 82(9), 543–553.

    Article  Google Scholar 

  • Ni, S., Chen, J., Wilson, C. R., Li, J., Hu, X., & Fu, R. (2018). Global terrestrial water storage changes and connections to ENSO events. Surveys in Geophysics, 39(1), 1–22.

    Article  Google Scholar 

  • Nishijima, J., Umeda, C., Fujimitsu, Y., Takayama, J., Hiraga, N., & Higuchi, S. (2016). Repeat absolute and relative gravity measurements for geothermal reservoir monitoring in the Ogiri geothermal field, Southern Kyushu, Japan. IOP Conference Series: Earth and Environmental Science, 42(1), 012004.

  • Ojeda-Olivares, E. A., Belmonte-Jimenez, S. I., Takaro, T. K., Campos-Enriquez, J. O., & Torres, M. L. D. G. (2018). Decrease of the water recharge and identification of water recharge zones in the alto atoyac sub-basin, oaxaca, as a result of climate change. Journal of Water and Climate Change, 9(1), 37–57.

    Article  Google Scholar 

  • Ojeda-Olivares, E. A., Torres-Sandoval, S., Belmonte-Jiménez, S. I., Campos-Enríquez, J. O., Zignol, F., Reygadas, Y., & Tiefenbacher, J. P. (2019). Climate change, land use/land cover change, and population growth as drivers of groundwater depletion in the Central Valleys, Oaxaca, Mexico. Remote Sensing, 11(11), 1290.

    Article  Google Scholar 

  • Pfeffer, J., Boucher, M., Hinderer, J., Favreau, G., Boy, J. P., De Linage, C., & Le Moigne, N. (2011). Local and global hydrological contributions to time-variable gravity in Southwest Niger. Geophysical Journal International, 184(2), 661–662.

    Article  Google Scholar 

  • Pool, D. R., & Eychaner, J. H. (1995). Measurements of aquifer-storage change and specific yield using gravity surveys. Groundwater, 33(3), 425–432.

    Article  Google Scholar 

  • Pool, D. R., & Schmidt, W. (1997). Measurement of ground-water storage change and specific yield using the temporal-gravity method near Rillito Creek, Tucson, Arizona. Water-Resources Investigations Report, 36. Retrieved from http://pubs.er.usgs.gov/publication/wri974125

  • Sabri, L. M., Sudarsono, B., & Aryadi, Y. (2020). Groundwater change detection by gravity measurement on northern coast of Java: A case study in Semarang City of central java of Indonesia. In IOP conference series: Materials science and engineering (Vol. 797, No. 1, p. 012032). IOP Publishing

  • Seraphin, P., Gonçalvès, J., Vallet-Coulomb, C., & Champollion, C. (2018). Multi-approach assessment of the spatial distribution of the specific yield: Application to the Crau plain aquifer, France. Hydrogeology Journal, 26(4), 1221–1238.

    Article  Google Scholar 

  • Sophocleous, M. (2002). Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal, 10(1), 52–67.

    Article  Google Scholar 

  • Sriyanti, S., Abdurrahman, D., Isniarnio, N. F., Amukti, R., Widayanti, S. (2019). Prediction of time-lapse microgravity value based on groundwater change map in 2003–2010 at Dayeuhkolot industrial area, Banding. Journal of Physics: Conf. Ser: 1375012045

  • Tanaka, T., & Honda, R. (2018). Vertical gravimeter array observations and their performance in groundwater-level monitoring. Earth and Space Science, 5(3), 62–74.

    Article  Google Scholar 

  • Wang, L., Chen, C., Zou, R., & Du, J. (2014). Surface gravity and deformation effects of water storage changes in China’s Three Gorges Reservoir constrained by modeled results and in situ measurements. Journal of Applied Geophysics, 108, 25–34.

    Article  Google Scholar 

  • Watlet, A., Van Camp, M., Francis, O., Poulain, A., Rochez, G., Hallet, V., Quinif Y., & Kaufmann O. (2020). Gravity monitoring of underground flash flood events to study their impact on groundwater recharge and the distribution of karst voids. Water Resources Research, 56(4), e2019WR026673.

Download references

Acknowledgments

The authors acknowledge the support of the Instituto de Geofísica of the Universidad Nacional Autónoma de México (UNAM) and of the Centro de Investigación Científica y de Educación Superior de Ensenada, B.C. (CICESE), for the loan of a Lacoste and Romberg gravimeter and a Scintrex SG-5 gravimeter to undertake measurements in October 1996 and May 2018, respectively; also for the partial funding by the Instituto Politécnico Nacional (IPN, México) through projects SIP 20181176 and SIP 20196181. In addition, the first author wishes to acknowledge to the Consejo Nacional de Ciencia y Tecnología (CONACyT) for her scholarship for doctoral studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Isidro Belmonte-Jiménez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Sánchez, R.I., Castellanos, F., Herrera-Barrientos, J. et al. Gravimetric Determination of Storage Coefficient and Storage Change of Groundwater in an Uncontrolled and Unconfined Aquifer. Nat Resour Res 30, 4207–4218 (2021). https://doi.org/10.1007/s11053-021-09904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09904-7

Keywords

Navigation