Geochemically Constrained Prospectivity Mapping Aided by Unsupervised Cluster Analysis

Abstract

In this paper, we explore unsupervised cluster analysis to aid mineral prospectivity mapping (MPM) in two aspects: (1) to cluster geochemical data for MPM based on detailed analysis of evidence maps and (2) to explore coherence of spatial signatures at/around mineralized locations as well as outliers of geochemical data. To do so, a systematic procedure is proposed based on the Iterative Self-organizing Data Analysis Techniques Algorithm (ISODATA). Through this procedure, the detailed analysis of evidence maps in Hezuo–Meiwu district, Gansu Province, China, which portray five selected geochemical elements, showed that clusters with and without mineralized locations provide insight to weighing of each evidence. Finally, through the integration of evidence maps, the favorability score map yielded high AUC (> 0.80) for delineating various mineralized locations in the study area, which proves the efficacy of unsupervised cluster analysis as an aid to MPM. Moreover, the coherence of spatial signatures of known mineralized locations, which comprise a training dataset, is vital to data-driven MPM. Groupings of mineralized locations based on the ISODATA and visual inspection supported by PCs from principal component analysis imply that different deposit types may share the same or similar spatial signature and outliers in geochemical data may be potential training samples used for data-driven MPM. Mineralized locations of the same deposit type may show significant dissimilarity. However, this provides insights into selecting mineralized/non-mineralized locations for creation of training datasets. Interestingly, in the study area, major mineralized locations in zones divided by regional fault are clustered separately into two groups. This result not only proves that cluster analysis is effective for exploring the coherence of spatial signatures at/around mineralized locations, but it also justified our previous study, whereby we performed MPM by zones using machine learning algorithms.

This is a preview of subscription content, access via your institution.

Figure 1

modified from Sui et al. 2017). Inset map of China from: http://bzdt.ch.mnr.gov.cn/

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

References

  1. Abbas, A., Minallh, N., Ahmad, N., Abid, S., & Khan, M. (2016). K-Means and ISODATA clustering algorithms for landcover classification using remote sensing. Sindh University Research Journal-SURJ (Science Series), 48(2).

  2. Abedi, M., Norouzi, G. H., & Torabi, S. A. (2013). Clustering of mineral prospectivity area as an unsupervised classification approach to explore copper deposit. Arabian Journal of Geosciences, 6(10), 3601–3613.

    Google Scholar 

  3. Ball, G. H., & Hall, D. J. (1965). ISODATA, a novel method of data analysis and pattern classification: Stanford research inst Menlo Park CA.

  4. Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159.

    Google Scholar 

  5. Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier.

  6. Carranza, E. J. M. (2010). Improved wildcat modelling of mineral prospectivity. Resource Geology, 60(2), 129–149.

    Google Scholar 

  7. Carranza, E. J. M., & Hale, M. (2000). Geologically constrained probabilistic mapping of gold potential, Baguio district, Philippines. Natural Resources Research, 9(3), 237–253.

    Google Scholar 

  8. Carranza, E. J. M., & Hale, M. (2001a). Geologically constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines. Natural Resources Research, 10(2), 125–136.

    Google Scholar 

  9. Carranza, E. J. M., & Hale, M. (2001b). Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines. Exploration and Mining Geology, 10(3), 165–175.

    Google Scholar 

  10. Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22(1–2), 117–132.

    Google Scholar 

  11. Carranza, E. J. M., Hale, M., & Faassen, C. (2008). Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33(3–4), 536–558.

    Google Scholar 

  12. Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of random forests algorithm. Ore Geology Reviews, 71, 777–787.

    Google Scholar 

  13. Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.

    Google Scholar 

  14. Carranza, E. J. M., Owusu, E. A., & Hale, M. (2009). Mapping of prospectivity and estimation of number of undiscovered prospects for lode gold, southwestern Ashanti Belt, Ghana. Mineralium Deposita, 44(8), 915–938.

    Google Scholar 

  15. Carranza, E. J. M., & Hale, M. (2002). Wildcat mapping of gold potential, Baguio district, Philippines. Applied Earth Science, 111(2), 100–105.

    Google Scholar 

  16. Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using Random Forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35–50.

    Google Scholar 

  17. Chen, Y. Y., & Gong, Q. S. (2007). Discussion on the division of deposit scale and the index of ore prospecting. Gansu Geology, 16(3), 6–11.

  18. Chung, C. J., & Keating, P. B. (2002). Mineral potential evaluation based on airborne geophysical data. Exploration Geophysics, 33(1), 28–34.

    Google Scholar 

  19. Clare, A., & Cohen, D. (2001). A comparison of unsupervised neural networks and k-means clustering in the analysis of multi-element stream sediment data. Geochemistry: Exploration, Environment, Analysis, 1(2), 119–134.

  20. Everitt, B. (1974). Cluster analysis heinemann educational London. Heinemann Educational: London, UK.

  21. Ghezelbash, R., Maghsoudi, A., & Carranza, E. J. M. (2019). Mapping of single-and multi-element geochemical indicators based on catchment basin analysis: Application of fractal method and unsupervised clustering models. Journal of Geochemical Exploration, 199, 90–104.

    Google Scholar 

  22. Ghezelbash, R., Maghsoudi, A., & Carranza, E. J. M. (2020). Sensitivity analysis of prospectivity modeling to evidence maps: Enhancing success of targeting for epithermal gold, Takab district NW, Iran. Ore Geology Reviews, 120, 103394.

    Google Scholar 

  23. Gordon, A. (1999). Classification. . New York: Chapman and Hall.

    Google Scholar 

  24. Hart, C. J., Baker, T., & Burke, M. (2000). New exploration concepts for country-rock-hosted, intrusion-related gold systems: Tintina gold belt in Yukon. The Tintina gold belt: concepts, exploration and discoveries. British Columbia and Yukon Chamber of Mines, Special, 2, 145–172.

    Google Scholar 

  25. Hronsky, J. M., & Kreuzer, O. P. (2019). Applying spatial prospectivity mapping to exploration targeting: Fundamental practical issues and suggested solutions for the future. Ore Geology Reviews, 107, 647–653.

    Google Scholar 

  26. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31, 651–666.

    Google Scholar 

  27. Lang, J. R., & Baker, T. (2001). Intrusion-related gold systems: The present level of understanding. Mineralium Deposita, 36(6), 477–489.

    Google Scholar 

  28. Li, J. W., Sui, J. X., Jin, X. Y., Wen, G., Chang, J., Zhu, R., et al. (2019). The intrusion-related gold deposits in the Xiahe-Hezuo District. West Qinling Orogen: Geodynamic setting and exploration potential. Earth Science Frontier, 26(5), 017–032.

    Google Scholar 

  29. Liu, F. T., Ting, K. M., & Zhou, Z. H. (2012). Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data (TKDD), 6(1), 1–39.

    Google Scholar 

  30. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Paper presented at the Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.

  31. Memarsadeghi, N., Mount, D. M., Netanyahu, N. S., & Le Moigne, J. (2007). A fast implementation of the ISODATA clustering algorithm. International Journal of Computational Geometry & Applications, 17(01), 71–103.

    Google Scholar 

  32. Meng, Q. R., & Zhang, G. W. (2000). Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323(3–4), 183–196.

    Google Scholar 

  33. Moeini, H., & Torab, F. M. (2017). Comparing compositional multivariate outliers with autoencoder networks in anomaly detection at Hamich exploration area, east of Iran. Journal of Geochemical Exploration, 180, 15–23.

    Google Scholar 

  34. Moon, W. M. (1990). Integration of geophysical and geological data using evidential belief function. IEEE Transactions on Geoscience and Remote Sensing, 28(4), 711–720.

    Google Scholar 

  35. Moon, W. M., & An, P. (1991). Integration of geophysical, geological and remote sensing data using fuzzy set theory. Geoinformatics, 2(2), 171–176.

    Google Scholar 

  36. Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models: A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71, 853–860.

    Google Scholar 

  37. Pourghasemi, H. R., & Kerle, N. (2016). Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environmental Earth Sciences, 75(3), 185.

    Google Scholar 

  38. Qi, J.H., Li, Z.C., & Wang, X.W. (2013). Report on the Prospect Survey of Mines in Hezuo-Meiwu district. Gansu: Third Institute Geological and Mineral Exploration of Gansu provincial Bureau of Geology and Mineral Resources, Gansu, China (in Chinese).

  39. Rock, N.M.S. (1988). Numerical Geology. Lecture Notes in Earth Sciences 18, Springer Verlag, New York-Berlin-Heidelberg, 427pp.

  40. Singer, D. A. (1993). Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Nonrenewable Resources, 2(2), 69–81.

    Google Scholar 

  41. Stensgaard, B. M., Chung, C. J., Rasmussen, T. M., & Stendal, H. (2006). Assessment of mineral potential using cross-validation techniques and statistical analysis: A case study from the Paleoproterozoic of West Greenland. Economic Geology, 101(7), 1397–1413.

    Google Scholar 

  42. Sui, J. X., Li, J. W., Wen, G., & Jin, X. Y. (2017). The Dewulu reduced Au-Cu skarn deposit in the Xiahe-Hezuo District, West Qinling orogen, China: Implications for an intrusion-related gold system. Ore Geology Reviews, 80, 1230–1244.

    Google Scholar 

  43. Sui, J.X., Li, J.W., Hofstra, A. H., O'Brien, H., Lahaye, Y., Yan, D., et al. (2020). Genesis of the Zaozigou gold deposit, West Qinling orogen, China: constraints from sulfide trace element and stable isotope geochemistry. Ore Geology Reviews, 103477.

  44. Sun, T., Li, H., Wu, K., Chen, F., Zhu, Z., & Hu, Z. (2020). Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from Southern Jiangxi Province, China. Minerals, 10(2), 102.

    Google Scholar 

  45. Templ, M., Filzmoser, P., & Reimann, C. (2008). Cluster analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 23(8), 2198–2213.

    Google Scholar 

  46. Torppa, J., Nykänen, V., & Molnár, F. (2019). Unsupervised clustering and empirical fuzzy memberships for mineral prospectivity modelling. Ore Geology Reviews, 107, 58–71.

    Google Scholar 

  47. Wang, J., Zhou, Y., & Xiao, F. (2020). Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: A case study from Ag-Pb-Zn deposits in north-western Zhejiang, China. Applied Geochemistry, 104679.

  48. Xiong, Y., & Zuo, R. (2016). Recognition of geochemical anomalies using a deep autoencoder network. Computers & Geosciences, 86, 75–82.

    Google Scholar 

  49. Yeung, K. Y., & Ruzzo, W. L. (2001). An empirical study on principal component analysis for clustering gene expression data. Bioinformatics, 17(9), 763–774.

  50. Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.

    Google Scholar 

  51. Yousefi, M., & Carranza, E. J. M. (2015b). Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.

    Google Scholar 

  52. Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25(1), 3–18.

    Google Scholar 

  53. Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94–106.

    Google Scholar 

  54. Zekri, H., Cohen, D. R., Mokhtari, A. R., & Esmaeili, A. (2019). Geochemical prospectivity mapping through a feature extraction–selection classification scheme. Natural Resources Research, 28(3), 849–865.

    Google Scholar 

  55. Zhang, S., Xiao, K., Carranza, E. J. M., & Yang, F. (2018). Maximum entropy and random forest modeling of mineral potential: Analysis of gold prospectivity in the Hezuo-Meiwu District, West Qinling Orogen, China. Natural Resources Research, 28(3), 645–664.

    Google Scholar 

  56. Zuo, R. G., Xiong, Y. H., Wang, J., & Carranza, E. J. M. (2019). Deep learning and its application in geochemical mapping. Earth-Science Reviews, 192, 1–14.

    Google Scholar 

Download references

Acknowledgments

Funding support for this research was derived from the National Key Research and Development Program of China (Project No. 2017YFC0601501), The China National Mineral Resources Assessment Initiative (Project Nos. 1212010733806 and 1212011120140), National Natural Science Foundation of China (NNSFC, Project No. 42002298) and China Scholarship Council (CSC No.201906400022).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuai Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Carranza, E.J.M., Xiao, K. et al. Geochemically Constrained Prospectivity Mapping Aided by Unsupervised Cluster Analysis. Nat Resour Res 30, 1955–1975 (2021). https://doi.org/10.1007/s11053-021-09865-x

Download citation

Keywords

  • Unsupervised cluster analysis
  • Spatial signature
  • ISODATA
  • Mineral prospectivity mapping