Skip to main content
Log in

Geochemical Evaluation of Suitability of Central Anatolian (Turkey) Volcanic Rocks for Rock Fiber Production

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

It is common to use synthetic fibers to increase the strength of engineering materials. Fibers obtained from rocks have also started to take their place in composite applications together with glass and carbon fibers. The suitability of Central Anatolian volcanic rocks for continuous fiber production is particularly interesting for the commercial sector desiring to invest in the material. In this study, geochemical data of 171 Central Anatolian volcanic rocks from different volcanic centers were used to calculate four different acidity and viscosity coefficients/modules, and a large dataset was evaluated with factor analysis as statistical data reduction method. The Central Anatolian volcanic rocks were compared with five reference rocks from Russia, Georgia and Ukraine. Their normative magnetite contents and viscosities at 1450 °C were calculated to determine whether the samples can be considered suitable for fiber production and whether they could provide melt stream stability during production. Some basic and intermediate volcanic rocks from the Sivas, Mt Erciyes, Mt Hasan and Obruk-Zengen regions have the potential to produce staple and continuous fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Acar, V., Cakir, F., Alyamaç, E., & Seydibeyoğlu, M. Ö. (2017). Basalt fibers. In M. Ö. Seydibeyoğlu, A. K. Mohanty, & M. Misra (Eds.), Fiber technology for fiber-reinforced composites (pp. 169–185). Cambridge: Wood Publishing.

    Google Scholar 

  • Aslanova, L. G. (2002). Method and apparatus for producing basaltic fibers. United States patent Application Publication. Pub. No.: US 2002/0069678A1.

  • Aydar, E., & Gourgaud, A. (2002). Garnet-bearing basalts: An example from Mt. Hasan, Central Anatolia, Turkey. Mineralogy and Petrology, 75, 185–201.

    Google Scholar 

  • Aydar, E., Schmitt, A. K., Çubukçu, H. E., Akın, L., Ersoy, O., Şen, E., et al. (2012). Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. Journal of Volcanology and Geothermal Research, 213–214, 83–97.

    Google Scholar 

  • Aydın, F., Schmitt, A. K., Siebel, W., Sönmez, M., Ersoy, Y., Lermi, A., et al. (2014). Quaternary bimodal volcanism in the Niğde Volcanic Complex (Cappadocia, central Anatolia, Turkey): Age, petrogenesis and geodynamic implications. Contributions to Mineralogy and Petrology, 168, 1–24.

    Google Scholar 

  • Bas, M. J. L., Maitre, R. W. L., Streckeisen, A., & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3), 745–750.

    Google Scholar 

  • Brooks, C. (1976). The Fe2O3/FeO ratio of basalt analyses: An appeal for a standardized procedure. Bulletin of Geolological Society of Denmark, 25, 117–120.

    Google Scholar 

  • Deák, T., & Czigány, T. (2009). Chemical composition and mechanical properties of basalt and glass fibers: A comparison. Textile Research Journal, 79, 645–651.

    Google Scholar 

  • Doğan-Külahçı, G. D. (2015). Chronological, magmatological and geochemical study of post-collisional basaltic volcanism in Central Anatolia and Its spatio-temporal evolution (pp. 224). PhD Thesis. Université Blaise Pascal-Clermont-Ferrand II, France.

  • Doğan-Külahçı, G. D., Temel, A., Gourgaud, A., Varol, E., Guillou, H., & Deniel, C. (2018). Contemporaneous alkaline and calc-alkaline series in Central Anatolia (Turkey): Spatio-temporal evolution of a post-collisional Quaternary basaltic volcanism. Journal of Volcanology and Geothermal Research, 356, 56–74.

    Google Scholar 

  • Fomichev, S. V., Babievskaya, I. Z., Dergacheva, N. P., Noskova, O. A., & Krenev, V. A. (2012). Criteria for assessing technological properties of gabbro-basalt rocks. Theoretical Foundations of Chemical Engineering, 46, 424–428.

    Google Scholar 

  • Gill, J. B. (1981). Orogenic andesites and plate tectonics. Berlin: Springer.

    Google Scholar 

  • Gill, R. (2010a). Basalts and related rocks. In R. Gill (Ed.), Igneous rocks and processes: A practical guide (pp. 20–64). New Jersey: Wiley-Blackwell.

    Google Scholar 

  • Gill, R. (2010b). Andesite, dacite and rhyolite. In R. Gill (Ed.), Igneous rocks and processes: A practical guide (pp. 161–208). New Jersey: Wiley-Blackwell.

    Google Scholar 

  • Gramenitskii, E. N., Kotel’nikov, A. R., Batanova, A. M., Shchekina, T. I., & Plechov, P. Y. (2000). Eksperimental’naya i tekhnicheskaya petrologiya (Experimental and Technical Petrology). Moskow: Nauchnyi Mir.

    Google Scholar 

  • Gutnikov, S. I., Manylov, M. S., Lipatov, Y. V., Lazoryak, B. I., & Pokholok, K. V. (2013). Effect of the reduction treatment on the basalt continuous fiber crystallization properties. Journal of Non-Crystalline Solids, 368, 45–50.

    Google Scholar 

  • Hoeun, S. (2015). Basalt resources in Lopburi Province: A potential raw material for basalt fiber production (pp. 73). MSc Thesis. Chulalongkorn University, Thailand.

  • Hollocher, K. (2020). NORM4 norm spreadsheet for single samples. Excel spreadsheet. http://minerva.union.edu/hollochk/c_petrology/other_files/norm4.xlsx. Accessed 01 April 2020.

  • Hughes, C. J., & Hussey, E. M. (1976). M and Mg values in igneous rocks: proposed usage and a comment on currently employed Fe2O3 corrections. Geochimica et Cosmochimica Acta, 40, 485–486. https://doi.org/10.1016/0016-7037(76)90015-6.

    Article  Google Scholar 

  • Hughes, C. J., & Hussey, E. M. (1979). Standardized procedure for presenting corrected Fe2O3/FeO ratios in analyses of fine grained mafic rocks. Neues Jahrbuch für Mineralogie-Monatshefte, 12, 570–572.

    Google Scholar 

  • Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. The Canadian Journal of Earth Sciences, 8, 523–548.

    Google Scholar 

  • Ivanitskii, S. G., & Gorbachev, G. F. (2011). Continuous basalt fibers: Production aspects and simulation of forming processes. I. State of the art in continuous basalt fiber technologies. Powder Metallurgy and Metal Ceramics, 50, 125–129.

    Google Scholar 

  • Johannesson, B., Sigfusson, T. I., & Franzson, H. (2019). Suitability of Icelandic basalt for production of continuous fibres. Applied Earth Science (Transactions of the Institutions of Mining and Metallurgy). https://doi.org/10.1080/25726838.2019.1575650.

    Article  Google Scholar 

  • Kaminskas, A. Y. (2003). Mineral fiber chemistry and technology. Rossiiskii Khimicheskii Zhurnal, 47, 32–38.

    Google Scholar 

  • Khan, B. K. (1967). Teoriya i praktika protsessov lit’ya (Theory and Practice of Casting). Kiev: Nauk Ukr SSR.

    Google Scholar 

  • Khan, B. K., Bykov, I. I., & Korablin, V. P. (1969). Zatverde vanie i kristallizatsiya kamennogo lit’ya (Solidification and Crystallization of Cast Stone Materials). Kiev: Naukova Dumka.

    Google Scholar 

  • Krenev, V. A., Kondakov, D. F., Pechenkina, E. N., & Fomichev, S. V. (2020). Modification of the composition of Gabbro-Basalt raw materials during melting in an oxidizing, inert, or reducing atmosphere. Glass Ceramics, 76, 432–435.

    Google Scholar 

  • Kürkçüoğlu, B., Pickard, M., Şen, P., Hanan, B. B., Sayit, K., Plummer, C., et al. (2015). Geochemistry of mafic lavas from Sivas, Turkey and the evolution of Anatolian lithosphere. Lithos, 232, 229–241.

    Google Scholar 

  • Kürkçüoglu, B., Şen, E., Aydar, E., Gourgaud, A., & Gündoğdu, N. (1998). Geochemical approach to magmatic evolution of Mt. Erciyes stratovolcano Central Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 85, 473–494.

    Google Scholar 

  • Le Maitre, R. W. (2002). Igneous rocks: A classification and glossary of terms. Recommendations of the IUGS subcommission on the systematics of igneous rocks. New York, NY: Cambridge University Press.

    Google Scholar 

  • McNab, F., Ball, P. W., Hoggard, M. J., & White, N. J. (2018). Neogene Uplift and Magmatism of Anatolia: Insights from Drainage Analysis and Basaltic Geochemistry. Geochemistry, Geophysics, Geosystems, 19, 175–213.

    Google Scholar 

  • Middlemost, E. A. K. (1989). Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology, 77, 19–26.

    Google Scholar 

  • Morozov, N. N., Bakunov, V. S., Morozov, E. N., Aslanova, L. G., Granovskii, P. A., Prokshin, V. V., et al. (2001). Materials based on Basalts from the European North of Russia. Glass and Ceramics, 58, 24–27.

    Google Scholar 

  • Mukherjee, S. P., Sinha, B. K., & Chattopadhyay, A. K. (2018). Statistical methods in social science research. Singapore: Springer.

    Google Scholar 

  • Notsu, K., Fujitani, T., Ui, T., Matsuda, J., & Ercan, T. (1995). Geochemical features of collision-related volcanic rocks in central and eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 64, 171–191.

    Google Scholar 

  • Novitskii, A. G., & Efremov, M. V. (2013). Technological aspects of the suitability of rocks from different deposits for the production of continuous basalt fiber. Glass and Ceramics, 69, 409–412. https://doi.org/10.1007/s10717-013-9491-z.

    Article  Google Scholar 

  • Parlak, O., Delaloye, M., Demirkol, C., & Ünlügenç, U. C. (2001). Geochemistry of Pliocene/Pleistocene basalts along the Central Anatolia Fault Zone (CAFZ), Turkey. Geodinamica Acta, 14, 159–167.

    Google Scholar 

  • Pasquarè, G., Poli, S., Vezzoli, L., & Zanchi, A. (1988). Continental arc volcanism and tectonic setting in Central Anatolia, Turkey. Tectonophysics, 146, 217–230.

    Google Scholar 

  • Pavlyukevich, Y. G., Papko, L. F., Khlystov, S. P., & Soldzhuner, E. A. (2019). Effect of boron-containing components on the technological properties of basaltic melts and glasses. Glass and Ceramics, 75, 424–427.

    Google Scholar 

  • Pisciotta, A., Perevozchikov, B. V., Osovetsky, B. M., Menshikova, E. A., & Kazymov, K. P. (2015). Quality assessment of melanocratic basalt for mineral fiber product, Southern Urals, Russia. Natural Resources Research, 24, 329–337.

    Google Scholar 

  • Platzman, E. S., Tapirdamaz, C., & Sanver, M. (1998). Neogene anticlockwise rotation of central Anatolia (Turkey): Preliminary palaeomagnetic and geochronological results. Tectonophysics, 299, 175–189.

    Google Scholar 

  • Reid, M. R., Schleiffarth, W. K., Cosca, M. A., Delph, J. R., Blichert-Toft, J., & Cooper, K. M. (2017). Shallow melting of MORB-like mantle under hot continental lithosphere, Central Anatolia. Geochemistry, Geophysics, Geosystems, 18, 1866–1888.

    Google Scholar 

  • Şen, P. A., Temel, A., & Gourgaud, A. (2004). Petrogenetic modelling of Quaternary post-collisional volcanism: a case study of central and eastern Anatolia. Geological Magazine, 141, 81–98.

    Google Scholar 

  • Seydibeyoğlu, M. Ö., Mohanty, A. K., & Misra, M. (2017). Introduction. In M. Ö. Seydibeyoğlu, A. K. Mohanty, & M. Misra (Eds.), Fiber technology for fiber-reinforced composites (pp. 1–3). Cambridge: Wood Publishing.

    Google Scholar 

  • Singha, K. (2012). A Short Review on Basalt Fiber. International Journal of Textile Science, 1, 19–28.

    Google Scholar 

  • Tatarintseva, O. S., & Khodakova, N. N. (2010). Obtaining basaltic continuous and staple fibers from rocks in Krasnodar Krai. Glass and Ceramics, 67, 165–168.

    Google Scholar 

  • Tatarintseva, O. S., Khodakova, N. N., & Uglova, T. K. (2012a). Effect of iron oxides on the proneness of synthesized basaltic metals toward fiber formation. Glass and Ceramics, 69(1–2), 71–74.

    Google Scholar 

  • Tatarintseva, O. S., Khodakova, N. N., & Uglova, T. K. (2012b). Dependence of the viscosity of basalt melts on the chemical composition of the initial mineral material. Glass and Ceramics, 68(9–10), 323–326.

    Google Scholar 

  • Toprak, V. (1998). Vent distribution and its relation to regional tectonics, Cappadocian Volcanics, Turkey. Journal of Volcanology and Geothermal Research, 85, 55–67.

    Google Scholar 

Download references

Acknowledgments

We would like to thank The Scientific and Technological Research Council of Turkey (TUBITAK) (The Project code: 119Y344 in 1002-Short Term R&D Funding Program) for financially supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orkun Ersoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ersoy, O., Aydar, E. & Çubukçu, H.E. Geochemical Evaluation of Suitability of Central Anatolian (Turkey) Volcanic Rocks for Rock Fiber Production. Nat Resour Res 30, 1093–1104 (2021). https://doi.org/10.1007/s11053-020-09771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09771-8

Keywords

Navigation