Skip to main content
Log in

Effect of Nanomagnetite on Properties of Medium- and High-Rank Coals

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Coal seams are natural gas reservoirs that provide potential for future CO2 capture and storage. Many problems must be resolved for CO2 storage in coal seams. To target problems of gas percolation, adsorption, and “stagnation” in gas reservoirs, the specific surface area, pore volume, permeability, and adsorption–desorption curves of three coal types with nanometer magnetite powder (NMP) mass fractions of 0%, 2%, 4%, and 6% were measured in dry state. The coal’s adsorption potential, specific surface area, and pore volume increased with an increase of NMP mass fraction. The specific surface area of coal mixed with NMP differed significantly from data that were calculated from the coal and NMP specific surface area, and the permeability was higher than for core without NMP, which indicates that the surface properties of coal can be changed by NMP addition. Although the permeability of coal core mixed with NMP exceeded that of the original coal core, an increase of NMP mass fraction resulted in an initial increase and then a decrease of coal core permeability from Pingdingshan and Anyang in China. NMP coverage of the coal surface increases the permeability for a coverage below 27%, and the permeability decreases when coverage exceeded 27%. Gas “stagnation” was affected by the ratio of equilibrium pressure to the saturated vapor pressure (p/p0) and by the coverage ratio. This research is significant for coal-bed methane exploration and underground gas storage construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Adams, R. E., Browning, W. E., & Ackley, R. D. (1959). Containment of radioactive fission gases by dynamic adsorption. Industrial and Engineering Chemistry, 51(12), 1467–1470.

    Google Scholar 

  • Akhbarizadeh, R., Shayestefar, M. R., & Darezereshki, E. (2014). Competitive removal of metals from wastewater by maghemite nanoparticles: a comparison between simulated wastewater and AMD. Mine Water and the Environment, 33(1), 89–96.

    Google Scholar 

  • Arif, M., Barifcani, A., Lebedev, M., & Iglauer, S. (2016). CO2-wettability of low to high rank coal seams: Implications for carbon sequestration and enhanced methane recovery. Fuel, 181(10), 680–689.

    Google Scholar 

  • Arif, M., Jones, F., Barifcani, A., & Iglauer, S. (2017). Influence of surface chemistry on interfacial properties of low to high rank coal seams. Fuel, 194(4), 211–221.

    Google Scholar 

  • Caineng, Z., Zhi, Y., Dongbo, H., Yunsheng, W., Jian, L., et al. (2018). Theory, technology and prospects of conventional and unconventional natural gas. Petroleum Exploration and Development, 45(4), 604–618.

    Google Scholar 

  • Duarte, A. L., DaBoit, K., Oliveira, M. L. S., Teixeira, E. C., Schneider, I. L., & Silva, L. F. O. (2019). Hazardous elements and amorphous nanoparticles in historical estuary coal mining area. Geoscience Frontiers, 10(003), 927–939.

    Google Scholar 

  • Dutta, M., Islam, N., Rabha, S., Narzary, B., & Saikia, B. K. (2019). Acid mine drainage in an Indian high-sulfur coal mining area: cytotoxicity assay and remediation study. Journal of Hazardous Materials, 389(11), 121851.

    Google Scholar 

  • Eskandari, L., Kheiri, F., & Iravani, M. (2018). Synthesis, characteristics and kinetic study of magnetic-zeolite nano composite for adsorption of Zirconium. Petroleum and Coal, 60(6), 1120–1131.

    Google Scholar 

  • Firouzi, M., Alnoaimi, K., Kovscek, A., & Wilcox, J. (2014). Klinkenberg effect on predicting and measuring helium permeability in gas shales. International Journal of Coal Geology, 123(3), 62–68.

    Google Scholar 

  • Gabor, A. S., & Yimin, L. (1994). Introduction to surface chemistry and catalysis. Hoboken: Wiley Press.

    Google Scholar 

  • Gredilla, A., Fdez-Ortiz, V. S., Rodriguez-Iruretagoiena, A., Gomez, L., Oliveira, M. L. S., Arana, G., et al. (2019). Evidence of mercury sequestration by carbon nanotubes and nanominerals present in agricultural soils from a coal fired power plant exhaust. Journal of Hazardous Materials, 378(2), 120747.

    Google Scholar 

  • Groen, J. C., Peffer, L. A. A., & Pérez-Ramírez, Javier. (2003). Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials, 60(1), 1–17.

    Google Scholar 

  • Iveira, M. L. S., Boit, K. D., Pacheco, F., Teixeira, E. C., Schneider, I. L., Crissien, T. J., et al. (2018). Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health. Environmental Research, 160(6), 562–567.

    Google Scholar 

  • Jia, L., Li, K., Zhou, J., Yan, Z., Wang, Y., & Mahlalela, B. M. (2019). Experimental study on enhancing coal-bed methane production by wettability alteration to gas wetness. Fuel, 255(11), 115860.

    Google Scholar 

  • Joseph, J., & Pignatello, J. J. (1999). The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Advances in Agronomy, 69(08), 1–73.

    Google Scholar 

  • Kenneth, N. E. (1991). Adsorption technology for air and water pollution control. Boca Raton, FL: CRC Press.

    Google Scholar 

  • León-Mejía, G., Machado, M. N., Okuro, R. T., Silva, L. F., Telles, C., Dias, J., et al. (2018). Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Science of the Total Environment, 625(11), 589–599.

    Google Scholar 

  • Li, J., Zhou, Q., Liu, Y., & Lei, M. (2017). Recyclable nanoscale zero-valent iron-based magnetic polydopamine coated nanomaterials for the adsorption and removal of phenanthrene and anthracene. Science and Technology of Advanced Material, 18(1), 3–16.

    Google Scholar 

  • Liu, Y., & Wilcox, J. (2012). Molecular simulation of CO2 adsorption in micro- and mesoporous carbons with surface heterogeneity. International Journal of Coal Geology, 104(12), 83–95.

    Google Scholar 

  • Lumley, J. L. (1973). Drag reduction in turbulent flow by polymer additives. Journal of Polymer Science: Macromolecular Reviews, 7(1), 263–290.

    Google Scholar 

  • Lyu, S., Chen, X., Shah, S. M., & Wu, X. (2019). Experimental study of influence of natural surfactant soybean phospholipid on wettability of high-rank coal. Fuel, 239(3), 1–12.

    Google Scholar 

  • Mendoza, M., & Munoz, J. (2010). Three-dimensional lattice boltzmann model for electrodynamics. Physical Review E, 82(5), 056708.

    Google Scholar 

  • Merkel, A., Gensterblum, Y., Krooss, B. M., & Amann, A. (2015). Competitive sorption of CH4, CO2 and H2O on natural coals of different rank. International Journal of Coal Geology, 150(10), 181–192.

    Google Scholar 

  • Middleton, R. S., Kuby, M. J., Wei, R., Keating, G. N., & Pawar, R. J. (2012). A dynamic model for optimally phasing in CO2 capture and storage infrastructure. Environmental Modelling and Software, 37(11), 193–205.

    Google Scholar 

  • Miyoshi, N., Nagata, S., Shiozaki, S., Kinefuchi, I., Sakiyama, Y., & Takagi, S., et al. (2007). 1603 development of ultra small shock tube for high energy molecular beam source. In AIP conference proceedings, 2007, Tokyo Japan, https://doi.org/10.1299/jsmemecjo.2007.2.0_217

  • Ness, N. F., Acuna, M. H., Lepping, R. P., Connerney, J. E. P., Behannon, K. W., Burlaga, L. F., et al. (1981). Magnetic field studies by Voyager 1: preliminary Results at Saturn. Science, 212(4491), 211–217.

    Google Scholar 

  • Nguyen, T. C., Romero, B., Vinson, E., & Wiggins, H. (2018). Effect of salt on the performance of drag reducers in slickwater fracturing fluids. Journal of Petroleum Science and Engineering, 163(4), 590–599.

    Google Scholar 

  • Nie, B., Liu, X., Yang, L., Meng, J., & Li, X. (2015). Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy. Fuel, 158(10), 908–917.

    Google Scholar 

  • Niu, C., Xia, W., & Peng, Y. (2018). Analysis of coal wettability by inverse gas chromatography and its guidance for coal flotation. Fuel, 228(9), 290–296.

    Google Scholar 

  • Nordin, A. P., Silva, J. D., Souza, C. T. D., Niekraszewicz, L. A. B., Dias, J. F., Boit, D. K., et al. (2018). In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage. Journal of Hazardous Materials, 346(6), 263–272.

    Google Scholar 

  • Ojha, S. P., Misra, S., Tinni, A., Sondergeld, C. H., & Rai, C. (2017). Estimation of pore-network characteristics and irreducible saturations in wolfcamp and eagle ford shales using low-pressure-nitrogen-adsorption/desorption-isotherm measurements. SPE Reservoir Evaluation & Engineering, 21(2), 373–391.

    Google Scholar 

  • Oliveira, M. L. S., Boit, K. D., Schneider, I. L., Teixeira, E. C., Crissien, B. T. J., & Silva, L. F. O. (2018). Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: mineral surface chemistry and nanoparticle-aggregation control for health studies. Journal of Cleaner Production, 188(13), 662–669.

    Google Scholar 

  • Pei, L., Dongmin, M., Jinchuan, Z., & Xuan, T. (2018). Effect of wettability on adsorption and desorption of coalbed methane: A case study from low-rank coals in the southwestern Ordos Basin. China. Industrial & Engineering Chemistry Research, 57(35), 12003–112015.

    Google Scholar 

  • Ricardo, U. C. A. J., Luiz, F. D. A. E., Torres, E. A., & Mendonca, F. F. G. (2018). Economic value of underground natural gas storage for the Brazilian power sector. Energy Policy, 121(10), 488–497.

    Google Scholar 

  • Satterfield, C. N., Clark, K. C., & Wayne, H. P. (1973). Restricted diffusion in liquids within fine pores. AIChE Journal, 19(3), 628–635.

    Google Scholar 

  • Sibeck, D. G., Lepping, R. P., & Lazarus, A. J. (1990). Magnetic field line draping in the plasma depletion layer. Journal of Geophysical Research: Space Physics, 95(A3), 2433–2440.

    Google Scholar 

  • Silva, L. F. O., Crissien, T. J., Sampaio, C. H., Hower, J. C., & Dai, S. (2020). Occurrence of carbon nanotubes and implication for the siting of elements in selected anthracites. Fuel, 263(3), 116740.

    Google Scholar 

  • Tapia, J. F. D., Lee, J. Y., Ooi, R. E. H., Foo, D. C. Y., & Tan, R. R. (2017). A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustainable Production and Consumption, 13(1), 1–15.

    Google Scholar 

  • Xin, S., Jianping, H., Guoxian, L., & Jing, T. (2013). Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry C, 1(4), 765–777.

    Google Scholar 

  • Xu, H., Chu, W., Huang, X., Sun, W., Jiang, C., & Liu, Z. (2016). CO2 adsorption-assisted CH4 desorption on carbon models of coal surface: A DFT study. Applied Surface Science, 376(13), 196–206.

    Google Scholar 

  • Yao, Y., Miao, S., Liu, S., Ma, L. P., Sun, H., & Wang, S. (2012). Synthesis, characterization, and adsorption properties of magnetic Fe3O4 graphene nanocomposite. Chemical Engineering Journal, 184(5), 326–332.

    Google Scholar 

  • Zhengguo, Z. (2012). Interface film principle and application. Beijing: Chemical Industry Press.

    Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China, Grant Numbers 51604092 and 51774116. The authors are grateful for the support of the Shanxi Jincheng Anthracite Mining Group Co., Ltd. We thank Laura Kuhar, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fajun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Liu, X. & Deng, Q. Effect of Nanomagnetite on Properties of Medium- and High-Rank Coals. Nat Resour Res 30, 591–603 (2021). https://doi.org/10.1007/s11053-020-09724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09724-1

Keywords

Navigation