Skip to main content
Log in

Simulation of Synthetic Exploration and Geometallurgical Database of Porphyry Copper Deposits for Educational Purposes

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The access to real geometallurgical data is very limited in practice, making it difficult for practitioners, researchers and students to test methods, models and reproduce results in the field of geometallurgy. The aim of this work is to propose a methodology to simulate geometallurgical data with geostatistical tools preserving the coherent relationship among primary attributes, such as grades and geological attributes, with mineralogy and some response attributes, for example, grindability, throughput, kinetic flotation performance and recovery. The methodology is based in three main components: (1) definition of spatial relationship between geometallurgical units, (2) cosimulation of regionalized variables with geometallurgical coherence and (3) simulation of georeferenced drill holes based on geometrical and operational constraints. The simulated geometallurgical drill holes generated look very realistic, and they are consistent with the input statistics, coherent in terms of geology and mineralogy and produce realistic processing metallurgical performance responses. These simulations can be used for several purposes, for example, benchmarking geometallurgical modeling methods and mine planning optimization solvers, or performing risk assessment under different blending schemes. Generated datasets are available in a public repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Abildin, Y., Madani, N., & Topal, E. (2019). A hybrid approach for joint simulation of geometallurgical variables with inequality constraint. Minerals, 9, 24. https://doi.org/10.3390/min9010024.

    Article  Google Scholar 

  • Aitchison, J. (1982). The statistical analysis of compositional data (with discussion). Journal of the Royal Statistical Society Series B (Statistical Methodology), 44(2), 139–177.

    Google Scholar 

  • Armstrong, M., Galli, A., Le Loc’h, G., Geffroy, F., & Eschard, F. (2003). Plurigaussian simulations in geosciences. Berlin: Springer.

    Book  Google Scholar 

  • Babak, O., & Deutsch, C. (2009). Improved spatial modeling by merging multiple secondary data for intrinsic collocated cokriging. Journal of Petroleum Science and Engineering, 69, 93–99.

    Article  Google Scholar 

  • Barnett, R., Manchuk, J., & Deutsch, C. (2013). Projection pursuit multivariate transform. Mathematical Geosciences. https://doi.org/10.1007/s11004-013-9497-7.

    Article  Google Scholar 

  • Beucher, H., & Renard, D. (2016). Truncated Gaussian and derived methods. Comptes Rendus Geoscience, 348(7), 510–519.

    Google Scholar 

  • Boisvert, J., Rossi, M., Ehrig, K., & Deutsch, C. (2013). Geometallurgical modelling at Olympic dam mine, South Australia. Mathematical Geosciences, 10, 10. https://doi.org/10.1007/s11004-013-9462-5.

    Article  Google Scholar 

  • Bolgkoranou, M., & Ortiz, J. (2019). Multivariate geostatistical simulation of compositional data using Principal Component Analysis: Application to a Nickel laterite deposit. In 39th APCOM conference: Application of computers and operations research in the mineral industry, 4–6 June 2019.

  • Boluwade, A., & Madramootoo, C. (2014). Geostatistical independent simulation of spatially correlated soil variables. Computers and Geosciences. https://doi.org/10.1016/j.cageo.2015.09.002.

    Article  Google Scholar 

  • Carmona, S., & Ortiz, J. (2010). Geological modelling and metallurgical prediction supported by linear and non-linear statistics. In Proceedings of the 4th international conference on mining innovation, MININ 2010, Santiago, Chile (pp. 459–470).

  • Carrasco, P., Chiles, J., & Seguret, S. (2008). Additivity, metallurgical recovery and grade. Paper presented at the Geostats 2008, Santiago, Chile.

  • Chiles, J., & Delfiner, P. (2012). Geostatistics: Modelling spatial uncertainty (2nd ed., p. 734). New York: Wiley. ISBN 978-0-470-18315-1.

    Book  Google Scholar 

  • Coleman, R., Franzidis, J., & Manlapig, E. (2007). Validation of the AMIRA P9 flotation model using the floatability characterization test rig (FCTR). In Ninth mill operators conference 2007, Fremantle, WA, Australia, 19–21 March 2007. Carlton, VIC: AusIMM.

  • Coward, S., Vann, J., Dunham, S., & Stewart, M. (2009). The primary-response framework for geometallurgical variables. Paper presented at the seventh international mining geology conference 2009, Perth, Western Australia.

  • Davis, J. (1986). Statistics and data analysis. Geology (2nd ed., p. 646). New York: Wiley.

    Google Scholar 

  • Desbarats, A., & Dimitrakopoulos, R. (2000). Geostatistical simulation of regionalized pore-size distributions using min/max autocorrelation factors. Mathematical Geology. https://doi.org/10.1023/A:1007570402430.

    Article  Google Scholar 

  • Deutsch, C. (1998). Cleaning categorical variable (lithofacies) realizations with maximum a posteriori selection. Computers and Geosciences, 24, 551–562. https://doi.org/10.1016/S0098-3004(98)00016-8.

    Article  Google Scholar 

  • Deutsch, C. (2006). A sequential indicator simulation program for categorical variable with point and block data: BlockSIS. Computers and Geosciences, 32, 1669–1681.

    Article  Google Scholar 

  • Deutsch, J. (2016). Multivariate spatial modeling of metallurgical rock properties. Thesis for the degree of doctor of philosophy, mining engineering. Department of Civil and Environmental Engineering, University of Alberta.

  • Deutsch, C., & Journel, A. (1998). GSLIB: Geostatistical software library and user’s guide (p. 340). New York, NY: Oxford University Press.

    Google Scholar 

  • Deutsch, J., Palmer, K., Deutsch, C., Szymanski, J., & Etsell, T. (2016). Spatial modeling of geometallurgical properties: Techniques and a case study. Natural Resources Research. https://doi.org/10.1007/s11053-015-9276-x.

    Article  Google Scholar 

  • Dominy, S., O’Connor, L., Parbhakar-Fox, A., Glass, H., & Purevgerel, S. (2018). Geometallurgy: A route to more resilient mine operations. Minerals, 8, 560.

    Google Scholar 

  • Fennel, M., Guevara, J., & Canchaya, S. (2015). QEMSCAN mineral analysis for ore characterization and plant support at Cerro Verde. In XXVII Convención Minera, Arequipa, Perú.

  • Garrido, M., Ortiz, J., Villaseca, F., Kracht, W., Townley, B., & Miranda, R. (2018a). Change of support using non-additive variables with Gibbs Sampler: Application to metallurgical recovery of sulfide ores. Computers and Geosciences. https://doi.org/10.1016/j.cageo.2018.10.002.

    Article  Google Scholar 

  • Garrido, M., Ortiz J., Sepúlveda, E., Farfan, L., & Townley, B. (2019) An overview of good practices in the use of geometallurgy to support mining reserves in copper sulfides deposits. In Proceeding procemin GEOMET 2019, November Santiago, Chile.

  • Garrido, M., Sepúlveda, E., & Navarro, F. (2016). A case study of geometallurgical modelling of metal recovery with unequal sampling. In Proceeding GEOMET 2016, December Santiago Chile.

  • Garrido, M., Sepúlveda, E., & Navarro, F. (2017). Optimization of planning and scheduling of ore body with open pit extraction considering homogeneity in clays as geometallurgical variables. In Proceeding Geomin Mineplanning, August 2017.

  • Garrido, M., Sepúlveda, E., Ortiz, J., Navarro, F., & Townley B. (2018b). A methodology for the simulation of synthetic geometallurgical block models of porphyry ore bodies. In Proceeding procemin GEOMET 2018, Santiago, Chile.

  • Gholamnejad, J., & Osanloo, M. (2007). Incorporation of ore grade uncertainty into the push back design process. Journal of the Southern African Institute of Mining and Metallurgy, 107, 177–185.

    Google Scholar 

  • Goodfellow, R., & Dimitrakopoulos, R. (2016). Global optimization of open pit mining complexes with uncertainty. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2015.11.038.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation (p. 483). Oxford: Oxford University Press.

    Google Scholar 

  • Hunt, L., & Jorgensen, M. (2011). Clustering mixed data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. https://doi.org/10.1002/widm.33.

    Article  Google Scholar 

  • Hunt, J., Kojovic, T., & Berry, R. (2013) Estimating comminution indices from ore mineralogy, chemistry and drill core logging. In The second AusIMM international geometallurgy conference, Brisbane, QLD (pp. 173–176).

  • Isaaks, E., & Srivastava, M. (1989). An introduction to applied geostatistics (p. 561). New York: Oxford University Press.

    Google Scholar 

  • Jackson, J., McFarlane, A., & Olson, K. (2011) Geometallurgy—Back to the future: Scoping and communicating geomet programs. In The first AusIMM international geometallurgy conference, Brisbane, Queensland, 5–7 June 2011 (pp. 115–123).

  • Jackson, J., & Young, M. (2016). Ore type: Everything to someone but nothing to anyone. Paper presented to 3rd international geometallurgy conference 2016, Perth, Western Australia.

  • Keeney, L., & Walters, S. (2011). A methodology for geometallurgical mapping and orebody modelling. Paper presented at the the first AusIMM international geometallurgy conference, Brisbane, Queensland.

  • King, R. (2001). Modeling and simulation of mineral processing systems. Modeling and Simulation of Mineral Processing Systems. https://doi.org/10.1016/B978-0-08-051184-9.50004-3.

    Article  Google Scholar 

  • Kumral, M. (2011). Incorporating geo-metallurgical information into mine production scheduling. Journal of the Operational Research Society, 62, 60–68.

    Article  Google Scholar 

  • Kumral, M. (2013). Optimizing ore–waste discrimination and block sequencing through simulated annealing. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2013.03.005.

    Article  Google Scholar 

  • Lamberg, P. (2011). Particles the bridge between geology and metallurgy. In Conference in mineral engineering. Luleå, Sweden.

  • Lamghari, A., & Dimitrakopoulos, R. (2012). A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2012.05.029.

    Article  Google Scholar 

  • Lane, K. (1988). The economic definition of ore: cut-off grades in theory and practice. Mining Journal, Books London.

  • Lerchs, H., & Grossman, F. (1965). Optimum design of open-pit mines. Transaction CIM, 58, 47–54.

    Google Scholar 

  • Lishchuk, V. (2016). Geometallurgical programs—Critical evaluation of applied methods and techniques. Doctoral thesis, Lulea University of Technology.

  • Lund, C., Lamberg, P., & Lindberg, T. (2015). Development of a geometallurgical framework to quantify mineral textures for process prediction. Minerals Engineering. https://doi.org/10.1016/j.mineng.2015.04.004.

    Article  Google Scholar 

  • Maksaev, V., Townley, B., Palacios, C., & Camus, F. (2007). Metallic ore deposits. In The geology of Chile (pp. 179–199). London: The Geological Society.

  • Manchuk, J., & Deutsch, C. (2012). A flexible sequential Gaussian simulation program: USGSIM. Computers and Geosciences. https://doi.org/10.1016/j.cageo.2011.08.013.

    Article  Google Scholar 

  • Mariethoz, G., & Caers, J. (2015). Multiple-point geostatistics: Stochastic modeling with training images, 374. Hoboken, NJ: Wiley.

    Google Scholar 

  • Montoya, P., Keeney, L., Jahoda, R., Hunt, J., Berry, R., Drews, U., et al. (2011). Geometallurgical modelling techniques applicable to pre-feasibility projects—La Colosa case study. In Proceedings of the international geometallurgy conference, Brisbane, Australia, 5–7 September 2011; Australasian Institute of Mining and Metallurgy: Melbourne, Australia, 2011 (pp. 103–111).

  • Morrell, S. (2006). Determination of the DWi using the SMC test and its use in orebody profiling, comminution circuit design and optimisation. Monograph series. Indooroopilly: SMCC Pty Ltd.

    Google Scholar 

  • Mueller, U., & Ferreira, J. (2012). The U-WEDGE transformation method for multivariate geostatistical simulation. Mathematical Geosciences. https://doi.org/10.1007/s11004-012-9384-7.

    Article  Google Scholar 

  • Munoz, B., Lesser, V., & Smith, R. (2010). Applying multiple imputation with geostatistical models to account for item nonresponse in environmental data. Journal of Modern Applied Statistical Methods, 9, 274–286.

    Article  Google Scholar 

  • Ortiz, J., Kracht, W., Townley, B., Lois, P., Cárdenas, E., Miranda, R., et al. (2015) Workflows in geometallurgical prediction: Challenges and outlook. In Proceedings of the 17th annual conference of the international association for mathematical geosciences IAMG 2015.

  • Pardo-Iguzguiza, E., Chica-Olmo, M., & Atkinson, P. (2006). Downscaling cokriging for image sharpening. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2006.02.014.

    Article  Google Scholar 

  • Pawlowsky-Glahn, V., & Olea, R. (2004). Geostatistical analysis of compositional data. Oxford: Oxford University Press.

    Google Scholar 

  • Sepúlveda, E., Dowd, P. A., & Xu, C. (2018a). The optimisation of block caving production scheduling with geometallurgical uncertainty: A multi-objective approach. Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology. https://doi.org/10.1080/25726668.2018.1442648.

    Article  Google Scholar 

  • Sepúlveda, E., Dowd, P. A., & Xu, C. (2018b). Fuzzy clustering with spatial correction and its application to geometallurgical domaining. Mathematical Geosciences. https://doi.org/10.1007/s11004-018-9751-0.

    Article  Google Scholar 

  • Sepúlveda, E., Dowd, P. A., Xu, C., & Addo, E. (2017). Multivariate modelling of geometallurgical variables by projection pursuit. Mathematical Geosciences. https://doi.org/10.1007/s11004-016-9660-z.

    Article  Google Scholar 

  • Sillitoe, R. (2010). Porphyry copper systems. Economic Geology, 105, 3–41.

    Google Scholar 

  • Silva, M., Dimitrakopoulos, R., & Lamghari, A. (2015). Solving a large SIP model for production scheduling at a gold mine with multiple processing streams and uncertain geology. Mining Technology. https://doi.org/10.1179/1743286314Y.0000000075.

    Article  Google Scholar 

  • Suazo, C., Kracht, W., & Alruiz, O. (2010). Geometallurgical modelling of the Collahuasi flotation circuit. Minerals Engineering. https://doi.org/10.1016/j.mineng.2009.11.005.

    Article  Google Scholar 

  • Suthers, S., Clout, J., & Donskoi, E. (2004). Prediction of plant process performance using feed characterisation: An emerging tool for plant design and optimisation. In MetPlant, Perth, WA, 6–7 September 2004 (pp. 203–217).

  • Tolosana-Delgado, R., Mueller, U., & Van den Boogaart, K. (2019). Geostatistics for compositional data: An overview. Mathematical Geosciences. https://doi.org/10.1007/s11004-018-9769-3.

    Article  Google Scholar 

  • Townley, B., Luca, R., Lopez, L., Muñoz, M., & Castillo, P. (2018) Geochemistry of hydrothermal alteration associations in porphyry copper deposits: Applications to geometallurgical modeling. In Proceeding RFG resources for future generations, June 16–21, 2018, Vancouver Convention Center, BC, Canada.

  • Tran, T., Wen, X., & Behrens, R. (1999) Efficient conditioning of 3D fine-scale reservoir model to multiphase production data using streamline-based coarse-scale inversion and geostatistical downscaling. In Annual technical conference and exhibition held in Houston, Texas, 3–6 October. Society of Petroleum Engineers Inc.

  • Vann, J., Jackson, J., Coward, S., & Dunham, S. (2011) The geomet curve: A model for implementation of geometallurgy. In The first AusIMM international geometallurgy conference, Brisbane, Queensland, 5–7 June 2011 (pp. 115–123). Melbourne: The Australasian Institute of Mining and Metallurgy.

  • Webster, R., & Oliver, M. (1990). Statistical methods in soil and land resource survey. New York: Oxford University Press.

    Google Scholar 

  • Yildirim, B., Bradshaw, D., & Powell, M. (2014). Development of an effective and practical Process Alteration Index (PAI) for predicting metallurgical responses of Cu porphyries. Minerals Engineering. https://doi.org/10.1016/j.mineng.2014.07.009.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support from project FONDEF ‘Caracterización y Modelamientos Geo-Minero-Metalúrgicos Predictivos: Camino a la Minería del Futuro’ (IT16M10021). The author acknowledges the support of the CONICYT PAI Concurso Nacional Tesis de Doctorado en el Sector Productivo, Convocatoria 2018 PAI7818D20001 and industrial support of IMDEX Limited—REFLEX INSTRUMENT South America SpA. We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC), funding reference number RGPIN-2017-04200 and RGPAS-2017-507956.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Garrido.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido, M., Sepúlveda, E., Ortiz, J. et al. Simulation of Synthetic Exploration and Geometallurgical Database of Porphyry Copper Deposits for Educational Purposes. Nat Resour Res 29, 3527–3545 (2020). https://doi.org/10.1007/s11053-020-09692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09692-6

Keywords

Navigation