Skip to main content
Log in

Multi-parameter Analysis of Local Singularity Mapping and Its Application to Identify Geochemical Anomalies in the Xishan Gold Deposit, North China

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Identification of geochemical anomalies from geological background is of great significance in the exploration of complex mineralization systems. For a 2D problem, the window-based local singularity mapping has been used widely to identify the distribution patterns of geochemical data. However, the optimal window parameters for calculating the singularity index are hard to determine. Previous studies commonly use the default parameters when applying singularity mapping. In this study, window-based local singularity mapping was performed and improved by comprehensive analysis of multiple parameters to explore geochemical anomalies associated with gold mineralization in the Xishan deposit, North China, with the aim of revealing undiscovered mineralization. By using Au anomalies as an example, the parameters that may influence the result of window-based local singularity processing have been analyzed and discussed to improve the mapping result. The parameters include the average concentration calculation algorithm, the shape of the sliding windows, the window size increment and the number of windows. Success-rate curves and area under the success-rate curve have been used to assess the spatial correlation of the singularity map with the known mineral occurrences. While square sliding window is the most regularly used window shape, circular and elliptical windows can be alternative choices. We found that the directions of major axis of the ellipses parallel or quasi-parallel to geological strike fit the locations of ore deposits better if the mineralization system is controlled by regional faults. After taking the influence of different parameters into account, geochemical anomalies were successfully separated from background and have been enhanced compared to anomalies identified solely from concentration values. Singularity–quantile analysis has been applied to recognize and separate multiple geochemical anomaly populations based on the singularity map in frequency and spatial domain. While the Au concentration map shows quite scattered strong and weak geochemical anomalies, the linear regions of positive singularity resolved by singularity–quantile analysis coincide well with the location of regional faults and alteration zones, which might indicate footprints of ore-forming fluids. Based on the singularity maps of multi-elements (Au, Ag, Cu and Pb), we resolved two prospect areas of mineralization bounded by regional faults, hydrothermally altered rocks and lamprophyres with positive singularity, which warrant further investigation for undiscovered mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring the performance of mineral-potential maps. Natural Resources Research, 14, 1–17.

    Google Scholar 

  • Bai, J., Porwal, A., Hart, C., Ford, A., & Yu, L. (2010). Mapping geochemical singularity using multifractal analysis: Application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. Journal of Geochemical Exploration, 104, 1–11.

    Google Scholar 

  • Borovec, Z. (1996). Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Science of the Total Environment, 177, 237–250.

    Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS (Vol. 11). Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2010). Catchment basin modelling of stream sediment anomalies revisited: Incorporation of EDA and fractal analysis. Geochemistry: Exploration, Environment, Analysis, 10, 365–381.

    Google Scholar 

  • Carranza, E. J. (2011). From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resource Geology, 61, 30–51.

    Google Scholar 

  • Carranza, E. J. M., de Souza Filho, C. R., Haddad-Martim, P. M., Nagayoshi, K., & Shimizu, I. (2019). Macro-scale ore-controlling faults revealed by micro-geochemical anomalies. Scientific Reports, 9, 4410.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35–50.

    Google Scholar 

  • Chen, G., & Cheng, Q. (2016). Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration. Computers & Geosciences, 87, 56–66.

    Google Scholar 

  • Chen, Z., Cheng, Q., Chen, J., & Xie, S. (2007). A novel iterative approach for mapping local singularities from geochemical data. Nonlinear Processes in Geophysics, 14, 317–324.

    Google Scholar 

  • Cheng, Q. (1999). Multifractal interpolation. In Proceedings of the fifth annual conference of the international association for mathematical geology, Trondheim, Norway (Vol. 1, pp. 245–250).

  • Cheng, Q. (2006). GIS-based multifractal anomaly analysis for prediction of mineralization and mineral deposits. Development of GIS in geosciences. Special volume of GAC/MAC (pp. 289–300).

  • Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32, 314–324.

    Google Scholar 

  • Cheng, Q. (2008). Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, 40, 503–532.

    Google Scholar 

  • Cheng, Q., & Agterberg, F. P. (2009). Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Computers & Geosciences, 35, 234–244.

    Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109–130.

    Google Scholar 

  • Cheng, Q., Xu, Y., & Grunsky, E. (1999). Integrated spatial and spectral analysis for geochemical anomaly separation. In Lippard, S. J., Naess, A., Sinding-Larsen, R. (Eds.), Proceedings of annual conference international association for mathematical geology (Vol. 1). Trondheim, Norway, 87–92 (6–11th August).

  • Cheng, Q., & Zhao, P. (2011). Singularity theories and methods for characterizing mineralization processes and mapping geo-anomalies for mineral deposit prediction. Geoscience Frontiers, 2, 67–79.

    Google Scholar 

  • Deutsch, C. V., & Journel, A. G. (1992). GSLIB: Geostatistical software library and user’s guide (p. 340). New York: Oxford University Press.

    Google Scholar 

  • Friedman, J. H., & Tukey, J. W. (1974). A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers, 100, 881–890.

    Google Scholar 

  • Goldfarb, R. J., Groves, D. I., & Gardoll, S. (2001). Orogenic gold and geologic time: A global synthesis. Ore Geology Reviews, 18, 1–75.

    Google Scholar 

  • Goldfarb, R. J., & Santosh, M. (2014). The dilemma of the Jiaodong gold deposits: Are they unique? Geoscience Frontiers, 5, 139–153.

    Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford: Oxford University Press on Demand.

    Google Scholar 

  • Grunsky, E. C. (2010). The interpretation of geochemical survey data. Geochemistry: Exploration, Environment, Analysis, 10, 27–74.

    Google Scholar 

  • Guo, P., Santosh, M., & Li, S. (2013). Geodynamics of gold metallogeny in the Shandong Province, NE China: An integrated geological, geophysical and geochemical perspective. Gondwana Research, 24, 1172–1202.

    Google Scholar 

  • Harris, J. R., Wilkinson, L., Grunsky, E., Heather, K., & Ayer, J. (1999). Techniques for analysis and visualization of lithogeochemical data with applications to the Swayze greenstone belt, Ontario. Journal of Geochemical Exploration, 67, 301–334.

    Google Scholar 

  • Kelley, D. L., Hall, G. E., Closs, L. G., Hamilton, I. C., & McEwen, R. M. (2003). The use of partial extraction geochemistry for copper exploration in northern Chile. Geochemistry: Exploration, Environment, Analysis, 3, 85–104.

    Google Scholar 

  • Li, Q., & Cheng, Q. (2004). Fractal singular-value (eigen-value) decomposition method for geophysical and geochemical anomaly reconstruction. Journal of China University of Geosciences, 29, 109–118.

    Google Scholar 

  • Li, C., Ma, T., & Shi, J. (2003). Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77, 167–175.

    Google Scholar 

  • Liu, Y., Cheng, Q., Carranza, E. J. M., & Zhou, K. (2019a). Assessment of geochemical anomaly uncertainty through geostatistical simulation and singularity analysis. Natural Resources Research, 28, 199–212.

    Google Scholar 

  • Liu, Y., Cheng, Q., & Zhou, K. (2019b). New insights into element distribution patterns in geochemistry: A perspective from fractal density. Natural Resources Research, 28, 5–29.

    Google Scholar 

  • Liu, Y., Xia, Q., & Carranza, E. J. M. (2019c). Integrating sequential indicator simulation and singularity analysis to analyze uncertainty of geochemical anomaly for exploration targeting of tungsten polymetallic mineralization, Nanling belt, South China. Journal of Geochemical Exploration, 197, 143–158.

    Google Scholar 

  • Liu, Y., Zhou, K., & Cheng, Q. (2017). A new method for geochemical anomaly separation based on the distribution patterns of singularity indices. Computers & Geosciences, 105, 139–147.

    Google Scholar 

  • Loska, K., & Wiechuła, D. (2003). Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere, 51, 723–733.

    Google Scholar 

  • Matheron, G. (1962). Traité de géostatistique appliquée, tome i: Mémoires du bureau de recherches géologiques et minières (p. 14). Paris: Editions Technip.

    Google Scholar 

  • Mihalasky, M. J., & Bonham-Carter, G. F. (2001). Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Natural Resources Research, 10, 209–226.

    Google Scholar 

  • Parsa, M., Maghsoudi, A., Carranza, E. J. M., & Yousefi, M. (2017). Enhancement and mapping of weak multivariate stream sediment geochemical anomalies in Ahar Area, NW Iran. Natural Resources Research, 26, 443–455.

    Google Scholar 

  • Pirajno, F. (2012). Hydrothermal mineral deposits: Principles and fundamental concepts for the exploration geologist. Berlin: Springer.

    Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 17(3), 185–206.

    Google Scholar 

  • Shen, J. F., Li, S. R., Ma, G. G., Liu, Y., Yu, H. J., & Liu, H. M. (2013). Typomorphic characteristics of pyrite from the Linglong gold deposit: Its vertical variation and prospecting significance. Earth Science Frontiers, 20, 55–75.

    Google Scholar 

  • Sinclair, A. J. (1974). Selection of threshold values in geochemical data using probability graphs. Journal of Geochemical Exploration, 3, 129–149.

    Google Scholar 

  • Sinclair, A. J. (1976). Applications of probability graphs in mineral exploration (No. 4). Association of Exploration Geochemists.

  • Singer, D. A., & Kouda, R. (2001). Some simple guides to finding useful information in exploration geochemical data. Natural Resources Research, 10, 137–147.

    Google Scholar 

  • Song, M. (2015). The main achievements and key theory and methods of deep-seated prospecting in the Jiaodong gold concentration area, Shandong province. Geological Bulletin of China, 34(9), 1759–1771.

    Google Scholar 

  • Song, M., Yi, P., Xu, J., Cui, S., Shen, K., Jiang, H., et al. (2012). A step metallogenetic model for gold deposits in the northwestern Shandong Peninsula, China. Science China Earth Sciences, 55, 940–948.

    Google Scholar 

  • Stanley, C. R., & Sinclair, A. J. (1989). Comparison of probability plots and gap statistics in the selection of threshold for exploration geochemistry data. Journal of Geochemical Exploration, 32, 355–357.

    Google Scholar 

  • Sun, X., Gong, Q., Wang, Q., Yang, L., Wang, C., & Wang, Z. (2010). Application of local singularity model to delineate geochemical anomalies in Xiong’ershan gold and molybdenum ore district, Western Henan province, China. Journal of Geochemical Exploration, 107, 21–29.

    Google Scholar 

  • Templ, M., Filzmoser, P., & Reimann, C. (2008). Cluster analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 23, 2198–2213.

    Google Scholar 

  • Tripathi, V. S. (1979). Factor analysis in geochemical exploration. Journal of Geochemical Exploration, 11, 263–275.

    Google Scholar 

  • Wang, W., Cheng, Q., Zhang, S., & Zhao, J. (2018). Anisotropic singularity: A novel way to characterize controlling effects of geological processes on mineralization. Journal of Geochemical Exploration, 189, 32–41.

    Google Scholar 

  • Wang, G., Feng, Y., Carranza, E. J. M., Li, R., Li, Z., Feng, Z., et al. (2016). Typomorphic characteristics of pyrite: Criteria for 3D exploration targeting in the Xishan gold deposit, China. Journal of Geochemical Exploration, 164, 136–163.

    Google Scholar 

  • Wang, W., Zhao, J., & Cheng, Q. (2013). Fault trace-oriented singularity mapping technique to characterize anisotropic geochemical signatures in Gejiu mineral district, China. Journal of Geochemical Exploration, 134, 27–37.

    Google Scholar 

  • Wang, W., Zhao, J., Cheng, Q., & Liu, J. (2012). Tectonic–geochemical exploration modeling for characterizing geo-anomalies in southeastern Yunnan district, China. Journal of Geochemical Exploration, 122, 71–80.

    Google Scholar 

  • Wang, J., & Zuo, R. (2019). Recognizing geochemical anomalies via stochastic simulation-based local singularity analysis. Journal of Geochemical Exploration, 198, 29–40.

    Google Scholar 

  • Wayland, K. G., Long, D. T., Hyndman, D. W., Pijanowski, B. C., Woodhams, S. M., & Haack, S. K. (2003). Identifying relationships between baseflow geochemistry and land use with synoptic sampling and R-mode factor analysis. Journal of Environmental Quality, 32, 180–190.

    Google Scholar 

  • Wen, B. J., Fan, H. R., Santosh, M., Hu, F. F., Pirajno, F., & Yang, K. F. (2015). Genesis of two different types of gold mineralization in the Linglong gold field, China: Constrains from geology, fluid inclusions and stable isotope. Ore Geology Reviews, 65, 643–658.

    Google Scholar 

  • Xiao, F., Chen, Z., Chen, J., & Zhou, Y. (2016). A batch sliding window method for local singularity mapping and its application for geochemical anomaly identification. Computers & Geosciences, 90, 189–201.

    Google Scholar 

  • Xiao, F., Chen, J., Hou, W., Wang, Z., Zhou, Y., & Erten, O. (2018). A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb–Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China. Journal of Geochemical Exploration, 189, 122–137.

    Google Scholar 

  • Xu, S., Xu, F., Hu, X., Zhu, Q., Zhao, Y., & Liu, S. (2020). Electromagnetic characterization of epithermal gold deposits: A case study from the Tuoniuhe gold deposit, Northeast China. Geophysics, 85, B49–B62.

    Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.

    Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015b). Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.

    Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24–35.

    Google Scholar 

  • Zhang, D., Cheng, Q., Agterberg, F., & Chen, Z. (2016). An improved solution of local window parameters setting for local singularity analysis based on Excel VBA batch processing technology. Computers & Geosciences, 88, 54–66.

    Google Scholar 

  • Zhang, S., Xiao, K., Carranza, E. J. M., Yang, F., & Zhao, Z. (2019). Integration of auto-encoder network with density-based spatial clustering for geochemical anomaly detection for mineral exploration. Computers & Geosciences, 130, 43–56.

    Google Scholar 

  • Zhang, Z., Zhang, J., Wang, G., Carranza, E. J. M., Pang, Z., & Wang, H. (2020). From 2D to 3D modeling of mineral prospectivity using multi-source geoscience datasets, Wulong Gold District, China. Natural Resources Research, 29, 345–364.

    Google Scholar 

  • Ziaii, M., Carranza, E. J. M., & Ziaei, M. (2011). Application of geochemical zonality coefficients in mineral prospectivity mapping. Computers & Geosciences, 37, 1935–1945.

    Google Scholar 

  • Zuo, R. (2011). Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111, 13–22.

    Google Scholar 

  • Zuo, R., Cheng, Q., Agterberg, F. P., & Xia, Q. (2009). Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration, 101(3), 225–235.

    Google Scholar 

  • Zuo, R., & Wang, J. (2016). Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration, 164, 33–41.

    Google Scholar 

  • Zuo, R., & Wang, J. (2020). ArcFractal: An ArcGIS add-in for processing geoscience data using fractal/multifractal models. Natural Resources Research, 29, 3–12.

    Google Scholar 

  • Zuo, R., Wang, J., Chen, G., & Yang, M. (2015). Identification of weak anomalies: A multifractal perspective. Journal of Geochemical Exploration, 148, 12–24.

    Google Scholar 

  • Zuo, R., Xia, Q., & Wang, H. (2013a). Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Applied Geochemistry, 28, 202–211.

    Google Scholar 

  • Zuo, R., Xia, Q., & Zhang, D. (2013b). A comparison study of the C–A and S–A models with singularity analysis to identify geochemical anomalies in covered areas. Applied Geochemistry, 33, 165–172.

    Google Scholar 

Download references

Acknowledgements

We thank the editors and reviewers who have helped us improve our manuscript. This research has been financially supported by National Natural Science Foundation of China (Grant Nos. 41630317 and 41572318), National Key Research and Development Program of China (No. 2018YFC1503700) and Fundamental Research Funds for the Central Universities (No. CUGCJ1707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyun Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Hu, X., Carranza, E.J.M. et al. Multi-parameter Analysis of Local Singularity Mapping and Its Application to Identify Geochemical Anomalies in the Xishan Gold Deposit, North China. Nat Resour Res 29, 3425–3442 (2020). https://doi.org/10.1007/s11053-020-09669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09669-5

Keywords

Navigation