Skip to main content

Advertisement

Log in

Weighted Photolineaments Factor (WPF): An Enhanced Method to Generate a Predictive Structural Evidential Map with Low Uncertainty, a Case Study in Chahargonbad Area, Iran

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Decreasing the uncertainty and increasing the prediction rate of evidential maps are two important objectives in mineral prospectivity mapping (MPM). In this paper, we proposed weighted photolineaments factor (WPF) to generate a continuous weighted structural evidential map with high prediction rate and low uncertainty in Chahrgonbad area. The WPF which has four components was defined as weighted sum of the values related to four following characteristics of lineaments: (a) number, (b) length, (c) number of intersection and (d) number of directional sets. We used the extracted lineaments from geological map and processing of aeromagnetic data in our analysis to enhance the prediction rate of WPF map. The process was implemented using an effective multistage algorithm including: texture analysis, phase symmetry analysis, non-maximal suppression, thresholding, skeletonization and line fitting process. Afterward, values related to various characteristics of lineaments were extracted and transformed by a logistic function to improve their predictive ability. Then, using the concentration-area fractal model and prediction-area plot, the prediction rate of WPF components was derived and their importance weights were calculated using normalized density. Finally, the WPF map was generated and evaluated using location of 18 known mineral occurrences in the study area. The results demonstrated a good concordance with our previous geological knowledge and experience about Cu mineralization in Chahrgonbad area. The number of lineaments directional sets and the number of lineaments were recognized as structural criteria with the highest prediction rate for Cu prospectivity. The generated WPF map has a higher prediction rate (80%) in comparison with each individual component and delineated 20% of the study area as prospective target. Eventually, three zones with high structural permeability which are fertile environment for emplacement of intrusions, circulation of magmatic-hydrothermal fluids and Cu mineralization were delineated on the WPF map and proposed for further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Abbaszadeh, S., Mehrnia, S. R., & Senemari, S. (2017). A fuzzy-based prognosis of ore mineralization potentials in Ramand region (Qazvin province). Journal of Mining and Environment, 8(3), 403–418.

    Google Scholar 

  • Abedi, M., Mohammadi, R., Norouzi, G.-H., & Mohammadi, M. S. M. (2016). A comprehensive VIKOR method for integration of various exploratory data in mineral potential mapping. Arabian Journal of Geosciences, 9(6), 482.

    Google Scholar 

  • Abedi, M., & Norouzi, G.-H. (2016). A general framework of TOPSIS method for integration of airborne geophysics, satellite imagery, geochemical and geological data. International Journal of Applied Earth Observation and Geoinformation, 46, 31–44.

    Google Scholar 

  • Abedi, M., Norouzi, G.-H., & Fathianpour, N. (2013a). Fuzzy outranking approach: A knowledge-driven method for mineral prospectivity mapping. International Journal of Applied Earth Observation and Geoinformation, 21, 556–567.

    Google Scholar 

  • Abedi, M., Norouzi, G. H., & Torabi, S. A. (2013b). Clustering of mineral prospectivity area as an unsupervised classification approach to explore copper deposit. Arabian Journal of Geosciences, 6(10), 3601–3613.

    Google Scholar 

  • Abedi, M., Torabi, S. A., & Norouzi, G.-H. (2013c). Application of fuzzy AHP method to integrate geophysical data in a prospect scale, a case study: Seridune copper deposit. Bollettino di Geofisica Teorica ed Applicata, 54(2), 145–164.

    Google Scholar 

  • Abedi, M., Torabi, S. A., Norouzi, G.-H., & Hamzeh, M. (2012a). ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping. Journal of Applied Geophysics, 87, 9–18.

    Google Scholar 

  • Abedi, M., Torabi, S. A., Norouzi, G.-H., Hamzeh, M., & Elyasi, G.-R. (2012b). PROMETHEE II: A knowledge-driven method for copper exploration. Computers & Geosciences, 46, 255–263.

    Google Scholar 

  • Adetona, A. A., & Abu, M. (2013). Investigating the structures within the lower Benue and upper Anambra Basins, Nigeria, using first vertical derivative, analytical signal and (CET) Center for exploration targeting plug-in. Earth Science, 2(5), 104–112.

    Google Scholar 

  • Adewumi, T., & Salako, K. (2018). Delineation of mineral potential zone using high resolution aeromagnetic data over part of Nasarawa State, North Central, Nigeria. Egyptian Journal of Petroleum, 27(4), 759–767.

    Google Scholar 

  • Adib, A., Mirzaei Ilani, S., Shoaei, G., & Afzal, P. (2017). Determination of a conceptual model for the structural features and Pb–Zn mineralization in the North of Behabad Fault Zone, Central Iran. Iranian Journal of Earth Sciences, 9(2), 168–183.

    Google Scholar 

  • Afzal, P., Afshar, Z. Z., Khankandi, F. S., Wetherelt, A., & Yasrebi, B. A. (2012a). Separation of uranium anomalies based on geophysical airborne analysis by using concentration-area (CA) fractal model, Mahneshan 1: 50000 Sheet, NW IRAN. Journal of Mining and Metallurgy A: Mining, 48(1), 1–11.

    Google Scholar 

  • Afzal, P., Alghalandis, Y. F., Khakzad, A., Moarefvand, P., & Omran, N. R. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration, 108(3), 220–232.

    Google Scholar 

  • Afzal, P., Jebeli, M., Pourkermani, M., & Jafari Rad, A. (2018). Correlation between rock types and copper mineralization using fractal modeling in Kushk-e-Bahram deposit, central Iran. Geopersia, 8(1), 131–141.

    Google Scholar 

  • Afzal, P., Khakzad, A., Moarefvand, P., Omran, N. R., Esfandiari, B., & Alghalandis, Y. F. (2010). Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. Journal of Geochemical Exploration, 104(1–2), 34–46.

    Google Scholar 

  • Afzal, P., Zarifi, A. Z., & Sadeghi, B. (2013). Separation of geochemical anomalies using factor analysis and concentration-number (CN) fractal modeling based on stream sediments data in Esfordi 1: 100000 Sheet, Central Iran. Iranian Journal of Earth Sciences, 5, 100–110.

    Google Scholar 

  • Afzal, P., Zia Zarifi, A., & Bijan Yasrebi, A. (2012b). Identification of uranium targets based on airborne radiometric data analysis by using multifractal modeling, Tark and Avanligh 1: 50 000 sheets, NW Iran. Nonlinear Processes in Geophysics, 19(2), 283–289.

    Google Scholar 

  • Agterberg, F. (2012). Multifractals and geostatistics. Journal of Geochemical Exploration, 122, 113–122.

    Google Scholar 

  • Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics, 229(3–4), 211–238.

    Google Scholar 

  • Alizadeh, H., & Arian, M. (2015). Rule of structural factors in formation of porphyry copper deposits in south western part of Kerman Area, Iran. Open Journal of Geology, 5(07), 489.

    Google Scholar 

  • Alizadeh, H., Arian, M., Lotfi, M., Ghorashi, M., & Ghorbani, M. (2015). Determination of porphyry copper deposit locations using photo lineament factor in northern parts of the Dehaj-Sardoiyeh belt. Geosciences, 24(94), 247–252.

    Google Scholar 

  • Almasi, A., Jafarirad, A., Afzal, P., & Rahimi, M. (2015). Prospecting of gold mineralization in Saqez area (NW Iran) using geochemical, geophysical and geological studies based on multifractal modelling and principal component analysis. Arabian Journal of Geosciences, 8(8), 5935–5947.

    Google Scholar 

  • Almasi, A., Yousefi, M., & Carranza, E. J. M. (2017). Prospectivity analysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran. Ore Geology Reviews, 91, 1066–1080.

    Google Scholar 

  • An, P., Moon, W., & Rencz, A. (1991). Application of fuzzy set theory to integrated mineral exploration. The Canadian Journal of Exploration Geophysics, 27, 1–11.

    Google Scholar 

  • Arian, M., Alizadeh, H., & Noroozpour, H. (2011). Satellite geometry of faults and fractures and its relationship with porphyry deposits in northern parts of Dahaj-Sardoiyeh belt, south of Iran. Indian Journal of Science and Technology, 4(10), 1303–1306.

    Google Scholar 

  • Asadi, H. H., Sansoleimani, A., Fatehi, M., & Carranza, E. J. M. (2016). An AHP–TOPSIS predictive model for district-scale mapping of porphyry Cu–Au potential: A case study from Salafchegan area (central Iran). Natural Resources Research, 25(4), 417–429.

    Google Scholar 

  • Assran, A., El Qassas, R., & Yousef, M. (2019). Detection of prospective areas for mineralization deposits using image analysis technique of aeromagnetic data around Marsa Alam-Idfu road, Eastern Desert, Egypt. Egyptian Journal of Petroleum., 28, 61–69.

    Google Scholar 

  • Barton, C. C., Paul, R., & Pointe, L. (1995). Fractals in the earth sciences. Berlin: Springer.

    Google Scholar 

  • Behyari, M., Rahimsouri, Y., Hoseinzadeh, E., & Kurd, N. (2019). Evaluating of lithological and structural controls on the barite mineralization by using the remote sensing, Fry and fractal methods, Northwest Iran. Arabian Journal of Geosciences, 12(5), 167.

    Google Scholar 

  • Berberian, M., & King, G. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2), 210–265.

    Google Scholar 

  • Berger, B. R., Ayuso, R. A., Wynn, J. C., & Seal Ii, R. R. (2008). Preliminary model of porphyry copper deposits. Open-File Report (Version 1.0 ed.).

  • Berthold, M. R., & Hand, D. J. (2007). Intelligent data analysis: An introduction. Berlin: Springer.

    Google Scholar 

  • Beygi, S., Talovina, I., Tadayon, M., & Nadimi, A. (2018). Tectonics and mineralization in the Urumieh–Dokhtar magmatic arc of Iran. Topical Issues of Rational Use of Natural Resources-Litvinenko (Ed.), pp. 9–16. London.

  • Birch, C. P., Oom, S. P., & Beecham, J. A. (2007). Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecological Modelling, 206(3–4), 347–359.

    Google Scholar 

  • Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.

    Google Scholar 

  • Bølviken, B., Stokke, P., Feder, J., & Jössang, T. (1992). The fractal nature of geochemical landscapes. Journal of Geochemical Exploration, 43(2), 91–109.

    Google Scholar 

  • Bonham-Carter, G. F. (1989). Weights of evidence modeling: A new approach to mapping mineral potential. Statistical Applications in the Earth Sciences, 12, 171–183.

    Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists-modeling with GIS. Computer Methods in the Geoscientists, 13, 398.

    Google Scholar 

  • Broadgate, M., Cheng, Q., Hayward, N., & Jennings, L. (2001). Using fractals and power laws to predict the location of mineral deposits. WMC Resources-Exploration Division (pp. 91–98)

  • Carranza, E. J. M. (2002). Geologically-constrained mineral potential mapping (pp. 480). PhD Thesis, Delft University of Technology, The Netherlands.

  • Carranza, E. J. M. (2004). Weights of evidence modeling of mineral potential: A case study using small number of prospects, Abra, Philippines. Natural Resources Research, 13(3), 173–187.

    Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS (Vol. 11). Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2009). Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews, 35(3–4), 383–400.

    Google Scholar 

  • Carranza, E. J. M. (2010). Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis, 10(2), 171–187.

    Google Scholar 

  • Carranza, E. J. M. (2011). From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resource Geology, 61(1), 30–51.

    Google Scholar 

  • Carranza, E. J. M. (2012). Primary geochemical characteristics of mineral deposits: Implications for exploration. Ore Geology Reviews, 45, 1–4.

    Google Scholar 

  • Carranza, E. J. M. (2015). Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values. Natural Resources Research, 24(3), 291–304.

    Google Scholar 

  • Carranza, E. J. M. (2017). Natural resources research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields. Natural Resources Research, 26(4), 379–410.

    Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001). Geologically constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines. Natural Resources Research, 10(2), 125–136.

    Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2002). Wildcat mapping of gold potential, Baguio district, Philippines. Applied Earth Science, 111(2), 100–105.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25(1), 35–50.

    Google Scholar 

  • Carranza, E. J. M., & Sadeghi, M. (2010). Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geology Reviews, 38(3), 219–241.

    Google Scholar 

  • Carranza, E. J. M., & Sadeghi, M. (2014). Post-VMS mineralization deformations (1880–1820 Ma) of the Skellefte district (Sweden): Insights from the spatial pattern of VMS occurrences. Frontiers of Earth Science, 8, 319.

    Google Scholar 

  • Carranza, E. J. M., Van Ruitenbeek, F., Hecker, C., van der Meijde, M., & van der Meer, F. D. (2008). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. International Journal of Applied Earth Observation and Geoinformation, 10(3), 374–387.

    Google Scholar 

  • Carranza, E. J. M., Woldai, T., & Chikambwe, E. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia. Natural Resources Research, 14(1), 47–63.

    Google Scholar 

  • Carranza, E. J. M., Zuo, R., & Cheng, Q. (2012). Fractal/multifractal modelling of geochemical exploration data. Journal of Geochemical Exploration, 122, 1–3.

    Google Scholar 

  • Chauvet, A. (2019). Editorial for special issue “structural control of mineral deposits: Theory and reality”. Basel: Multidisciplinary Digital Publishing Institute.

    Google Scholar 

  • Chen, Z., Chen, J., Tian, S., & Xu, B. (2017). Application of fractal content-gradient method for delineating geochemical anomalies associated with copper occurrences in the Yangla ore field, China. Geoscience Frontiers, 8(1), 189–197.

    Google Scholar 

  • Cheng, Q. (1995). The perimeter-area fractal model and its application to geology. Mathematical Geology, 27(1), 69–82.

    Google Scholar 

  • Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55–70.

    Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2), 109–130.

    Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Bonham-Carter, G. F. (1996). A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration, 56(3), 183–195.

    Google Scholar 

  • Cheng, Q., Xu, Y., & Grunsky, E. (2000). Multifractal power spectrum-area method for geochemical anomaly separation. Natural Resources Research, 9(1), 43–51.

    Google Scholar 

  • Chung, C., & Agterberg, F. (1980). Regression models for estimating mineral resources from geological map data. Journal of the International Association for Mathematical Geology, 12(5), 473–488.

    Google Scholar 

  • Chunzhong, N., Zhang, S., Chen, Z., Yan, Y., & Li, Y. (2017). Mapping the spatial distribution and characteristics of lineaments using fractal and multifractal models: A case study from Northeastern Yunnan Province, China. Scientific Reports, 7, 1–11.

    Google Scholar 

  • Cloos, M. (2001). Bubbling magma chambers, cupolas, and porphyry copper deposits. International Geology Review, 43(4), 285–311.

    Google Scholar 

  • Cooke, D. R., Hollings, P., Wilkinson, J. J., & Tosdal, R. (2014). Geochemistry of porphyry deposits. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (2nd ed., Vol. 13, pp. 357–381). Amsterdam: Elsevier.

    Google Scholar 

  • Coolbaugh, M. F., Raines, G. L., & Zehner, R. E. (2007). Assessment of exploration bias in data-driven predictive models and the estimation of undiscovered resources. Natural Resources Research, 16(2), 199–207.

    Google Scholar 

  • Cox, D., & Snell, E. (1989). The analysis of binary data (2nd ed.). London: Chapman and Hall.

    Google Scholar 

  • Daneshvar Saein, L., Rasa, I., Rashidnejad Omran, N., Moarefvand, P., & Afzal, P. (2012). Application of concentration-volume fractal method in induced polarization and resistivity data interpretation for Cu–Mo porphyry deposits exploration, case study: Nowchun Cu–Mo deposit, SE Iran. Nonlinear Processes in Geophysics, 19(4), 431–438.

    Google Scholar 

  • Davis, J. C. (2002). Statistics and data analysis in geology. New York: Wiley.

    Google Scholar 

  • Daya, A. A. (2015a). Application of concentration–area method for separating geochemical anomalies from background: A case study of Shorabhaji region, northwest of Iran. Arabian Journal of Geosciences, 8(6), 3905–3913.

    Google Scholar 

  • Daya, A. A. (2015b). Comparative study of C-A, C–P, and N–S fractal methods for separating geochemical anomalies from background: A case study of Kamoshgaran region, northwest of Iran. Journal of Geochemical Exploration, 150, 52–63.

    Google Scholar 

  • Daya, A. A., & Afzal, P. (2015). A comparative study of concentration-area (C-A) and spectrum-area (S-A) fractal models for separating geochemical anomalies in Shorabhaji region, NW Iran. Arabian Journal of Geosciences, 8, 8263.

    Google Scholar 

  • Daya, A. A., Boomeri, M., & Mazraee, N. (2017). Identification of geochemical anomalies by the use of concentration-area (CA) fractal model in Nakhilab region, SE Iran. International Journal of Mining and Mineral Engineering, 8(1), 70–81.

    Google Scholar 

  • Deng, B., Liu, S., Jansa, L., Yong, S., & Zhang, Z. (2014). Fractal analysis of veins in Permian carbonate rocks in the Lingtanchang anticline, western China. Geofluids, 14(2), 160–173.

    Google Scholar 

  • Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, Q., & Liu, H. (2010). Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration, 105(3), 95–105.

    Google Scholar 

  • Derakhshani, R., & Mehrabi, A. (2009). Spatial association of copper mineralization and faults/fractures in southern part of Central Iranian volcanic belt. Trends in Applied Sciences Research, 4(3), 133–147.

    Google Scholar 

  • Derakhshani, R., Mehrabi, A., & Baghfalaki, Z. (2010). Specific relation of faults and copper mineralization in Chahargonbad area, Iran. Research Journal of Environmental Sciences, 4, 414–420.

    Google Scholar 

  • D’ercole, C., Groves, D., & Knox-Robinson, C. (2000). Using fuzzy logic in a Geographic Information System environment to enhance conceptually based prospectivity analysis of Mississippi valley-type mineralisation. Australian Journal of Earth Sciences, 47(5), 913–927.

    Google Scholar 

  • Du, X., Zhou, K., Cui, Y., Wang, J., Zhang, N., & Sun, W. (2016). Application of fuzzy analytical hierarchy process (AHP) and prediction-area (PA) plot for mineral prospectivity mapping: A case study from the Dananhu metallogenic belt, Xinjiang, NW China. Arabian Journal of Geosciences, 9(4), 298.

    Google Scholar 

  • Elkhateeb, S. O., & Abdellatif, M. A. G. (2018). Delineation potential gold mineralization zones in a part of Central Eastern Desert, Egypt using airborne magnetic and radiometric data. NRIAG Journal of Astronomy and Geophysics, 7, 361.

    Google Scholar 

  • Elkhateeb, S. O., Eldosouky, A. M., & Samir, A. (2018). Interpretation of aeromagnetic data to delineate structural complexity zones and porphyry intrusions at Samr El Qaa Area, North Eastern Desert, Egypt. International Journal of Novel Research in Civil Structural and Earth Sciences, 5(1), 1–9.

    Google Scholar 

  • Elyasi, G.-R., Bahroudi, A., & Abedi, M. (2019). Risk-based analysis in mineral potential mapping: Application of quantifier-guided ordered weighted averaging method. Natural Resources Research, 28, 931–951.

    Google Scholar 

  • Ewusi, A., Adatsi, E., & Seidu, J. (2018). Integrated geophysical study to delineate mineralised zones in southwest Ashanti Belt of Ghana. Journal of Geoscience and Environment Protection, 6(07), 77.

    Google Scholar 

  • Farahani, S. M., & Alinia, F. (2015). Geochemical anomaly separation by multi-fractal modeling: Case study of Zarshuran gold deposit. Arabian Journal of Geosciences, 8(11), 9545–9555.

    Google Scholar 

  • Ford, A., & Blenkinsop, T. G. (2008). Evaluating geological complexity and complexity gradients as controls on copper mineralisation, Mt Isa Inlier. Australian Journal of Earth Sciences, 55(1), 13–23.

    Google Scholar 

  • Fournier, R. O. (1999). Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology, 94(8), 1193–1211.

    Google Scholar 

  • Funedda, A., Naitza, S., Buttau, C., Cocco, F., & Dini, A. (2018). Structural controls of ore mineralization in a polydeformed basement: Field examples from the Variscan Baccu Locci Shear Zone (SE Sardinia, Italy). Minerals, 8(10), 456.

    Google Scholar 

  • Ghadimi, F., & Ghomi, M. (2016). Using stream sediment data to determine geochemical anomalies by statistical analysis and fractal modeling in Tafrash Region, Central Iran. Geopersia, 6(1), 45–61.

    Google Scholar 

  • Gumiel, P., Sanderson, D., Arias, M., Roberts, S., & Martín-Izard, A. (2010). Analysis of the fractal clustering of ore deposits in the Spanish Iberian Pyrite Belt. Ore Geology Reviews, 38(4), 307–318.

    Google Scholar 

  • Haddad-Martim, P. M., Carranza, E. J. M., & de Souza Filho, C. R. (2018). The fractal nature of structural controls on ore formation: The case of the iron oxide copper-gold deposits in the Carajás Mineral Province, Brazilian Amazon. Economic Geology, 113(7), 1499–1524.

    Google Scholar 

  • Hagemann, S. G., Lisitsin, V., & Huston, D. (2016). Mineral system analysis: Quo vadis. Ore Geology Reviews, 76, 504–522.

    Google Scholar 

  • Halley, S., Dilles, J., & Tosdal, R. (2015). Footprints: The hydrothermal alteration and geochemical dispersion around porphyry copper deposits. Society of Economic Geologists Newsletter, 100, 1–7.

    Google Scholar 

  • Hao, Y., & Wang, G. (2012). Application of fractal models to characterization of vertical distribution of Mo deposits in Henan Province. In 2012 8th international conference on natural computation, 2012 (pp. 927–931). IEEE

  • Hardcastle, K. C. (1995). Photolineament factor: A new computer-aided method for remotely sensing the degree to which bedrock is fractured. Photogrammetric Engineering and Remote Sensing, 61(6), 739–746.

    Google Scholar 

  • Harris, J., Wilkinson, L., Heather, K., Fumerton, S., Bernier, M., Ayer, J., et al. (2001). Application of GIS processing techniques for producing mineral prospectivity maps—a case study: Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research, 10(2), 91–124.

    Google Scholar 

  • Hassani, H., & Sarkheil, H. (2009). Structural controls of polymetal mineralization in North Kashmar, Iran. Australian Journal of Basic and Applied Sciences, 3, 3058–3066.

    Google Scholar 

  • Hassanpour, S., & Afzal, P. (2013). Application of concentration-number (C-N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences, 6(3), 957–970.

    Google Scholar 

  • Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32(9), 1283–1298.

    Google Scholar 

  • Henkel, H., & Guzman, M. (1977). Magnetic features of fracture zones. Geoexploration, 15(3), 173–181.

    Google Scholar 

  • Hezarkhani, A. (2009). Hydrothermal fluid geochemistry at the Chah-Firuzeh porphyry copper deposit, Iran: Evidence from fluid inclusions. Journal of Geochemical Exploration, 101(3), 254–264.

    Google Scholar 

  • Holden, E.-J., Denith, M., & Kovesi, P. (2007). Automatic image analysis for mineral exploration. In Proceedings of exploration, 2007 (Vol. 7, pp. 903–906).

  • Holden, E.-J., Dentith, M., & Kovesi, P. (2008). Towards the automated analysis of regional aeromagnetic data to identify regions prospective for gold deposits. Computers & Geosciences, 34(11), 1505–1513.

    Google Scholar 

  • Holden, E.-J., Wong, J. C., Kovesi, P., Wedge, D., Dentith, M., & Bagas, L. (2012). Identifying structural complexity in aeromagnetic data: An image analysis approach to greenfields gold exploration. Ore Geology Reviews, 46, 47–59.

    Google Scholar 

  • Holliday, J., & Cooke, D. (2007). Advances in geological models and exploration methods for copper ± gold porphyry deposits. In Proceedings of exploration, 2007 (Vol. 7, pp. 791-809). Citeseer

  • Hosseinali, F., & Alesheikh, A. A. (2008). Weighting spatial information in GIS for copper mining exploration. American Journal of Applied Sciences, 5(9), 1187–1198.

    Google Scholar 

  • Hosseini-Nasab, M., & Daya, A. (2018). Separation of geochemical anomalies using inverse distant weighting (IDW) and concentration-area (C-A) fractal modeling based on stream sediments data in Janja Region, SE Iran. Bulletin of The Mineral Research and Exploration, 156, 167–178.

    Google Scholar 

  • Hronsky, J. M., & Groves, D. I. (2008). Science of targeting: Definition, strategies, targeting and performance measurement. Australian Journal of Earth Sciences, 55(1), 3–12.

    Google Scholar 

  • Hühn, S. R. B., & Silva, A. M. (2018). Favorability potential for IOCG type deposits in the Riacho do Pontal Belt: New insights for identifying prospects of IOCG-type deposits in NE Brazil. Brazilian Journal of Geology, 48(4), 703–719.

    Google Scholar 

  • Joly, A., Porwal, A., McCuaig, T. C., Chudasama, B., Dentith, M. C., & Aitken, A. R. (2015). Mineral systems approach applied to GIS-based 2D-prospectivity modelling of geological regions: Insights from Western Australia. Ore Geology Reviews, 71, 673–702.

    Google Scholar 

  • Karami, K., & Afzal, P. (2015). Application of multifractal modeling for separation of sulfidic mineralized zones based on induced polarization and resistivity data in the Ghare-Tappeh Cu deposit, NW Iran. Iran Journal of Earth Science, 77, 134–141.

    Google Scholar 

  • Karimi, M., Menhaj, M., & Mesgari, M. (2008). Preparing mineral potential map using fuzzy logic in GIS environment. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1263–1270.

    Google Scholar 

  • Kayadibi, Ö., & Aydal, D. (2019). A comparative predictive analysis of weighted overlay, weighted sum and fuzzy logic for mineral prospectivity mapping of precious and base metal mineralizations at north-east of Gümüşhane city, NE Turkey. Geocarto International, 34(5), 539–559.

    Google Scholar 

  • Kentwell, D. (1997). Fractal relationships and spatial distribution of ore body modelling.

  • Khalifani, F. M., Bahroudi, A., Barak, S., & Abedi, M. (2019). An integrated Fuzzy AHP-VIKOR method for gold potential mapping in Saqez prospecting zone, Iran. Earth Observation and Geomatics Engineering, 3(1), 21–33.

    Google Scholar 

  • Khan-Nazer, N. H., Emami, M. H., & Ghaforie, M. (1995). Geological map of Chahargonbad. Tehran, Iran: Geological Survey of Iran Publication.

    Google Scholar 

  • Kovesi, P. (1997) Symmetry and asymmetry from local phase. In Tenth Australian joint conference on artificial intelligence, 1997 (Vol. 190, pp. 2–4). Citeseer

  • Lam, L., Lee, S.-W., & Suen, C. Y. (1992). Thinning methodologies-a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9), 869–885.

    Google Scholar 

  • Li, Q., & Cheng, Q. (2006). VisualAnomaly: A GIS-based multifractal method for geochemical and geophysical anomaly separation in Walsh domain. Computers & Geosciences, 32(5), 663–672.

    Google Scholar 

  • Li, C., Ma, T., & Shi, J. (2003). Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77(2–3), 167–175.

    Google Scholar 

  • Lin, X., Zhang, B., & Wang, X. (2014). Application of factor analysis and concentration-volume fractal modeling to delineation of 3D geochemical patterns: A case study of the Jinwozi gold field, NW China. Geochemistry: Exploration, Environment, Analysis, 14(4), 359–367.

    Google Scholar 

  • Liu, Y., Cheng, Q., Xia, Q., & Wang, X. (2014). Mineral potential mapping for tungsten polymetallic deposits in the Nanling metallogenic belt, South China. Journal of Earth Science, 25(4), 689–700.

    Google Scholar 

  • Liu, Y., Zhou, K., & Xia, Q. (2018). A MaxEnt model for mineral prospectivity mapping. Natural Resources Research, 27(3), 299–313.

    Google Scholar 

  • Lowell, J. D., & Guilbert, J. M. (1970). Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology, 65(4), 373–408.

    Google Scholar 

  • Lusty, P., Scheib, C., Gunn, A., & Walker, A. (2012). Reconnaissance-scale prospectivity analysis for gold mineralisation in the Southern Uplands-Down-Longford Terrane, Northern Ireland. Natural Resources Research, 21(3), 359–382.

    Google Scholar 

  • Lyu, C., Cheng, Q., Zuo, R., & Wang, X. (2017). Mapping spatial distribution characteristics of lineaments extracted from remote sensing image using fractal and multifractal models. Journal of Earth Science, 28(3), 507–515.

    Google Scholar 

  • Mahbouby Niyeh, M. M., Jafarirad, A., Karami, J., & Bokani, S. J. (2017). Copper, zinc, and lead mineral prospectivity mapping in the North of Tafresh, Markazi Province, Central Iran, Using the AHP-OWA method. Open Journal of Geology, 7(04), 533.

    Google Scholar 

  • Mahmoodi, M. Y., Bahroudi, A., Ghorbani, M., & Arian, M. (2013). Preliminary exploration of copper minerals in Jebal Barez mountains, Iran. Open Journal of Geology, 3(3), 201.

    Google Scholar 

  • Mandelbrot, B. B. (1977). Fractals: Form, chance, and dimension. http://books.google.com/books?id=avw_AQAAIAAJ.

  • Mandelbrot, B. B., & Wheeler, J. A. (1983). The fractal geometry of nature. American Journal of Physics, 51(3), 286–287.

    Google Scholar 

  • Mansouri, E., Feizi, F., & Karbalaei Ramezanali, A. (2015). Identification of magnetic anomalies based on ground magnetic data analysis using multifractal modelling: A case study in Qoja-Kandi, East Azerbaijan Province, Iran. Nonlinear Processes in Geophysics, 22(5), 579–587.

    Google Scholar 

  • McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews, 38(3), 128–138.

    Google Scholar 

  • McKay, G., & Harris, J. (2016). Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research, 25(2), 125–143.

    Google Scholar 

  • McQueen, K. G. (2005). Ore deposit types and their primary expressions. Regolith Expression of Australian Ore Systems, 12, 1–14.

    Google Scholar 

  • Micheli-Tzanakou, E. (2000). Supervised and unsupervised pattern recognition. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Micklethwaite, S., Sheldon, H. A., & Baker, T. (2010). Active fault and shear processes and their implications for mineral deposit formation and discovery. Journal of Structural Geology, 32(2), 151–165.

    Google Scholar 

  • Mihalasky, M. J., & Bonham-Carter, G. F. (2001). Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Natural Resources Research, 10(3), 209–226.

    Google Scholar 

  • Mohammadi, A., Khakzad, A., Rashidnejad Omran, N., Mahvi, M. R., Moarefvand, P., & Afzal, P. (2013). Application of number-size (N-S) fractal model for separation of mineralized zones in Dareh-Ashki gold deposit, Muteh complex, Central Iran. Arabian Journal of Geosciences, 6(11), 4387–4398.

    Google Scholar 

  • Moreira, F. R., Almeida-Filho, R., & Câmara, G. (2003). Spatial analysis techniques applied to mineral prospecting: An evaluation in the Poços de Caldas Plateau. Brazilian Journal of Geology, 33(2), 183–190.

    Google Scholar 

  • Morton, R. (2009). A brief guide to the geology of ore deposits. Economic geology-4350 (p. 83). Amsterdam: Elesevier.

    Google Scholar 

  • Mostafavi Kashani, S. B., Abedi, M., & Norouzi, G.-H. (2016). Fuzzy logic mineral potential mapping for copper exploration using multi-disciplinary geo-datasets, a case study in seridune deposit, Iran. Earth Science Informatics, 9(2), 167–181.

    Google Scholar 

  • Mousa, A., & Al-Rahim, A. (2016). Lineaments determination of Western part of Iraqi western desert using aeromagnetic and gravity data. Australian Journal of Basic and Applied Sciences, 2, 321.

    Google Scholar 

  • Najafi, A., Abdi, M., Rahimi, B., & Motevali, K. (2010). Spatial integration of fry and fractal analyses in regional exploration: A case study from Bafq–Posht-e-Badam, Irán. Geología Colombiana, 35, 113–130.

    Google Scholar 

  • Najafi, A., Karimpour, M. H., & Ghaderi, M. (2014). Application of fuzzy AHP method to IOCG prospectivity mapping: A case study in Taherabad prospecting area, eastern Iran. International Journal of Applied Earth Observation and Geoinformation, 33, 142–154.

    Google Scholar 

  • Niemeyer, H., & Munizaga, R. (2008). Structural control of the emplacement of the Portrerillos porphyry copper, central Andes of Chile. Journal of South American Earth Sciences, 26(3), 261–270.

    Google Scholar 

  • Nouri, R., Afzal, P., Arian, M., Jafari, M., & Feizi, F. (2013a). Reconnaissance of copper and gold mineralization using Analytical Hierarchy Process (AHP) in the Rudbar 1: 100,000 map sheet, Northwest Iran. Journal of Mining and Metallurgy A: Mining, 49(1), 9–19.

    Google Scholar 

  • Nouri, R., Jafari, M. R., Arian, M., Feizi, F., & Afzal, P. (2013b). Correlation between Cu mineralization and major faults using multifractal modelling in the Tarom area (NW Iran). Geologica Carpathica, 64(5), 409–416.

    Google Scholar 

  • Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P., & Gardoll, S. J. (2008). Reconnaissance-scale conceptual fuzzy-logic prospectivity modelling for iron oxide copper–gold deposits in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55(1), 25–38.

    Google Scholar 

  • Panahi, A., & Cheng, Q. (2004). Multifractality as a measure of spatial distribution of geochemical patterns. Mathematical Geology, 36(7), 827–846.

    Google Scholar 

  • Paravarzar, S., Maarefvand, P., Maghsoudi, A., & Afzal, P. (2014). Correlation between geological units and mineralized zones using fractal modeling in Zarshuran gold deposit (NW Iran). Arabian Journal of Geosciences, 8, 3845.

    Google Scholar 

  • Parker, J. R. (2010). Algorithms for image processing and computer vision. New York: John Wiley & Sons.

    Google Scholar 

  • Parsa, M., & Maghsoudi, A. (2018). Controls on Mississippi valley-type Zn–Pb mineralization in Behabad district, Central Iran: Constraints from spatial and numerical analyses. Journal of African Earth Sciences, 140, 189–198.

    Google Scholar 

  • Pazand, K., & Hezarkhani, A. (2016). Comparison of subjective and objective methods for the spatial estimation of the porphyry Cu potential in Ahar-Arasbaran area, north-western Iran. Bollettino di Geofisica Teorica ed Applicata, 57(4), 343–364.

    Google Scholar 

  • Pazand, K., & Hezarkhani, A. (2018). Predictive Cu porphyry potential mapping using fuzzy modelling in Ahar-Arasbaran zone, Iran. Geology, Ecology, and Landscapes, 2(4), 229–239.

    Google Scholar 

  • Pazand, K., Hezarkhani, A., & Ataei, M. (2012). Using TOPSIS approaches for predictive porphyry Cu potential mapping: A case study in Ahar-Arasbaran area (NW, Iran). Computers & Geosciences, 49, 62–71.

    Google Scholar 

  • Pazand, K., Hezarkhani, A., Ataei, M., & Ghanbari, Y. (2011). Application of multifractal modeling technique in systematic geochemical stream sediment survey to identify copper anomalies: A case study from Ahar, Azarbaijan, Northwest Iran. Chemie der Erde-Geochemistry, 71(4), 397–402.

    Google Scholar 

  • Porwal, A., Carranza, E., & Hale, M. (2003). Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12(1), 1–25.

    Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2004). A hybrid neuro-fuzzy model for mineral potential mapping. Mathematical Geology, 36(7), 803–826.

    Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research, 15(1), 1–14.

    Google Scholar 

  • Porwal, A., Das, R. D., Chaudhary, B., Gonzalez-Alvarez, I., & Kreuzer, O. (2015). Fuzzy inference systems for prospectivity modeling of mineral systems and a case-study for prospectivity mapping of surficial Uranium in Yeelirrie Area, Western Australia. Ore Geology Reviews, 71, 839–852.

    Google Scholar 

  • Proffett, J. M. (2009). High Cu grades in porphyry Cu deposits and their relationship to emplacement depth of magmatic sources. Geology, 37(8), 675–678.

    Google Scholar 

  • Raines, G. L. (2008). Are fractal dimensions of the spatial distribution of mineral deposits meaningful? In G. Bonham-Carter & Q. Cheng (Eds.), Progress in geomathematics (pp. 285–301). Berlin, Heidelberg: Springer, Berlin Heidelberg.

    Google Scholar 

  • Rasekh, P., Kiani, F., Asadi, H. H., & Tabatabaei, S. H. (2016). Mineral prospectivity mapping by fuzzy logic data integration, Kajan Area in Central Iran. In The 34 national & 2nd international geosciences congress (pp. 1–10). Tehran, Iran

  • Richards, J. P. (2005). Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits. Super Porphyry Copper and Gold Deposits: A Global Perspective, 1, 7–25.

    Google Scholar 

  • Richards, J. P. (2011). Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1), 1–26.

    Google Scholar 

  • Richards, J. P. (2013). Giant ore deposits formed by optimal alignments and combinations of geological processes. Nature Geoscience, 6(11), 911.

    Google Scholar 

  • Richards, J. P. (2016). Economic geology: Clues to hidden copper deposits. Nature Geoscience, 9(3), 195.

    Google Scholar 

  • Richards, J. P., Boyce, A. J., & Pringle, M. S. (2001). Geologic evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96(2), 271–305.

    Google Scholar 

  • Roshanravan, B., Aghajani, H., Yousefi, M., & Kreuzer, O. (2018). Particle swarm optimization algorithm for neuro-fuzzy prospectivity analysis using continuously weighted spatial exploration data. Natural Resources Research, 28, 309.

    Google Scholar 

  • Roshanravan, B., Aghajani, H., Yousefi, M., & Kreuzer, O. (2019). An improved prediction-area plot for prospectivity analysis of mineral deposits. Natural Resources Research, 28(3), 1089–1105.

    Google Scholar 

  • Rowe, G., & Wright, G. (2001). Expert opinions in forecasting: The role of the Delphi technique. In J. S. Armstrong (Ed.), Principles of forecasting: A handbook for researchers and practitioners (pp. 125–144). Boston, MA: Springer.

    Google Scholar 

  • Rustami, S., Nureddin, M. S., Aboud, E., Yonezu, K., & Watanabe, K. (2017). Investigating structural and tectonic evolution of central afghanistan using remote sensing and gravity data. Journal of Geology and Geophysics, 6(313), 2.

    Google Scholar 

  • Saadat, S. (2017). Comparison of various knowledge-driven and logistic-based mineral prospectivity methods to generate Cu and Au exploration targets case study: Feyz-Abad area (North of Lut block, NE Iran). Journal of Mining and Environment, 8(4), 611–629.

    Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process (Vol. 324). New York: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (2014). Analytic heirarchy process. Statistics reference online. New York: Wiley.

    Google Scholar 

  • Sackman, H. (1974). Delphi assessment: Expert opinion, forecasting, and group process. Santa Monica: Rand Corp.

    Google Scholar 

  • Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A. B., & Saein, L. D. (2012). Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration, 122, 9–19.

    Google Scholar 

  • Saric, V., Nedeljkovic, R., & Colovic, M. (1972). Report on explorations for copper in Nowchun area (pp. 1–39). Geological survey of Iran (GSI) internal report (unpublished).

  • Sarkheil, S. H., & Hassani, H. (2009). Correlation between mineralization and structural controls using the fractal analysis of fault distribution in northeast of Iran. International Multidisciplinary Scientific GeoConference: SGEM: Surveying Geology & mining Ecology Management, 1, 381.

    Google Scholar 

  • Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105(1), 3–41.

    Google Scholar 

  • Singer, D., Berger, V. I., & Moring, B. C. (2008). Porphyry copper deposits of the world: Database and grade and tonnage models. Reston: US Geological Survey.

    Google Scholar 

  • Sridhar, M., Babu, V. R., Chaturvedi, A., & Roy, M. (2015). Predictive GIS modeling from Landsat, AGRS, aeromagnetic and ground surveys for uranium exploration—a case study from Sonakhan Block, Chhattisgarh, India. Journal of the Indian Society of Remote Sensing, 43(2), 347–362.

    Google Scholar 

  • Sun, W., Wang, J.-T., Zhang, L.-P., Zhang, C.-C., Li, H., Ling, M.-X., et al. (2016). The formation of porphyry copper deposits. Acta Geochimica, 36(1), 9–15.

    Google Scholar 

  • Sun, T., Wu, K., Chen, L., Liu, W., Wang, Y., & Zhang, C. (2017). Joint application of fractal analysis and weights-of-evidence method for revealing the geological controls on regional-scale tungsten mineralization in Southern Jiangxi Province, China. Minerals, 7(12), 243.

    Google Scholar 

  • Sun, T., Xu, Y., Yu, X., Liu, W., Li, R., Hu, Z., et al. (2018). Structural controls on copper mineralization in the Tongling Ore District, Eastern China: Evidence from spatial analysis. Minerals, 8(6), 254.

    Google Scholar 

  • Sung, Q., Chen, Y., & Chao, P. (1998). Spatial variation of fractal parameters and its geological implications. Terrestrial, Atmospheric and Oceanic Sciences, 9(4), 655–672.

    Google Scholar 

  • Tabaei, M., Mansouri Esfahani, M., Rasekh, P., & Esna-Ashari, A. (2018). Mineral prospectivity mapping in GIS using fuzzy logic integration in Khondab area, western Markazi province, Iran. Journal of Tethys, 5, 367.

    Google Scholar 

  • Tangestani, M., & Moore, F. (2003). Mapping porphyry copper potential with a fuzzy model, northern Shahr-e-Babak, Iran. Australian Journal of Earth Sciences, 50(3), 311–317.

    Google Scholar 

  • Theodoridis, S., & Koutroumbas, K. (2008). Pattern recognition (4th ed.). New York: Academic Press.

    Google Scholar 

  • Tosdal, R. M., & Richards, J. P. (2001). Magmatic and structural controls on the development of porphyry Cu ± Mo ± Au deposits. In J. P. Richards & R. M. Tosdal (Eds.), Structural controls on ore genesis. Littleton: Society of Economic Geologists.

    Google Scholar 

  • Tripp, G. I., & Vearncombe, J. R. (2004). Fault/fracture density and mineralization: A contouring method for targeting in gold exploration. Journal of Structural Geology, 26(6–7), 1087–1108.

    Google Scholar 

  • Turcotte, D. L. (1989). Fractals in geology and geophysics. Pure and Applied Geophysics, 131(1–2), 171–196.

    Google Scholar 

  • Wang, G., Zhang, S., Yan, C., Xu, G., Ma, M., Li, K., et al. (2012). Application of the multifractal singular value decomposition for delineating geophysical anomalies associated with molybdenum occurrences in the Luanchuan ore field (China). Journal of Applied Geophysics, 86, 109–119.

    Google Scholar 

  • Weinberg, F. R., Hodkiewicz, P., & Groves, D. (2004). What controls gold distribution in Archean terranes? Geology, 32, 545.

    Google Scholar 

  • Wemegah, D. D., Preko, K., Noye, R. M., Boadi, B., Menyeh, A., Danuor, S. K., et al. (2015). Geophysical interpretation of possible gold mineralization zones in Kyerano, south-western Ghana using aeromagnetic and radiometric datasets. Journal of Geoscience and Environment Protection, 3(04), 67.

    Google Scholar 

  • Wilkinson, J. J. (2013). Triggers for the formation of porphyry ore deposits in magmatic arcs. Nature Geoscience, 6(11), 917.

    Google Scholar 

  • Williams-Jones, A. E., Migdisov, A. A., Archibald, S. M., & Xiao, Z. (2002). Vapor-transport of ore metals. Water-rock interaction, ore deposits, and environmental geochemistry: A tribute to David A. Crerar. Geology, 1, 279–306.

    Google Scholar 

  • Wu, X., & Liu, T. (2005). Discussion on the application of aeromagnetic data fractal in predicting in situ leachable sandstone-type uranium deposits. World Nuclear Geoscience, 22(3), 167–171.

    Google Scholar 

  • Xiang, J., Xiao, K., Carranza, E. J. M., Chen, J., & Li, S. (2019). 3D mineral prospectivity mapping with random forests: A case study of Tongling, Anhui, China. Natural Resources Research, 29, 1–20.

    Google Scholar 

  • Xiao, K., Li, N., Porwal, A., Holden, E.-J., Bagas, L., & Lu, Y. (2015). GIS-based 3D prospectivity mapping: A case study of Jiama copper-polymetallic deposit in Tibet, China. Ore Geology Reviews, 71, 611–632.

    Google Scholar 

  • Xie, Y. S., Tan, K. X., Chen, L., Huang, W., Hu, K. G., & Wang, X. C. (2012). Fractal character of structural control on uranium mineralization in South China. In Applied mechanics and materials, 2012 (Vol. 229, pp. 2597–2600). Trans Tech Publications

  • Xiong, Y., & Zuo, R. (2018). GIS-based rare events logistic regression for mineral prospectivity mapping. Computers & Geosciences, 111, 18–25.

    Google Scholar 

  • Xiong, Y., Zuo, R., & Carranza, E. J. M. (2018). Mapping mineral prospectivity through big data analytics and a deep learning algorithm. Ore Geology Reviews, 102, 811–817.

    Google Scholar 

  • Yang, F., Wang, G., Santosh, M., Li, R., Tang, L., Cao, H., et al. (2017). Delineation of potential exploration targets based on 3D geological modeling: A case study from the Laoangou Pb–Zn–Ag polymetallic ore deposit, China. Ore Geology Reviews, 89, 228–252.

    Google Scholar 

  • Yazdi, Z., Jafarirad, A., Aghazadeh, M., & Afzal, P. (2019). Porphyry copper prospectivity mapping using fuzzy and fractal modeling in sonajeel area, NW Iran. Bulletin of The Mineral Research and Exploration, 158, 235–250.

    Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.

    Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015b). Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.

    Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25(1), 3–18.

    Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2017). Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences, 128, 47–60.

    Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24–35.

    Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environment, Analysis, 14(1), 45–58.

    Google Scholar 

  • Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. (2019). Exploration information systems-a proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 5, 103005.

    Google Scholar 

  • Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94–106.

    Google Scholar 

  • Yousefi, M., & Nykänen, V. (2017). Introduction to the special issue: GIS-based mineral potential targeting. Amsterdam: Elsevier.

    Google Scholar 

  • Zarasvandi, A., Liaghat, S., Zentilli, K., & Porter, T. (2005). Porphyry copper deposits of the Urumieh–Dokhtar magmatic arc, Iran. Super Porphyry Copper and Gold Deposits: A Global Perspective, 2, 441–452.

    Google Scholar 

  • Zeghouane, H., Allek, K., & Kesraoui, M. (2016). GIS-based weights of evidence modeling applied to mineral prospectivity mapping of Sn-W and rare metals in Laouni area, Central Hoggar, Algeria. Arabian Journal of Geosciences, 9(5), 373.

    Google Scholar 

  • Zhang, D., Agterberg, F., Cheng, Q., & Zuo, R. (2014). A comparison of modified fuzzy weights of evidence, fuzzy weights of evidence, and logistic regression for mapping mineral prospectivity. Mathematical Geosciences, 46(7), 869–885.

    Google Scholar 

  • Zhang, D., Ren, N., & Hou, X. (2018). An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1. 0) and its application to mineral prospectivity mapping. Geoscientific Model Development, 11(6), 2525.

    Google Scholar 

  • Zhang, N., Zhou, K., & Du, X. (2017). Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China. Journal of African Earth Sciences, 128, 84–96.

    Google Scholar 

  • Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59(3), 556–572.

    Google Scholar 

  • Zhao, J., Chen, S., Zuo, R., & Carranza, E. J. M. (2011). Mapping complexity of spatial distribution of faults using fractal and multifractal models: Vectoring towards exploration targets. Computers & Geosciences, 37(12), 1958–1966.

    Google Scholar 

  • Zuo, R. (2016). A nonlinear controlling function of geological features on magmatic–hydrothermal mineralization. Scientific Reports, 6, 27127.

    Google Scholar 

  • Zuo, R., Agterberg, F. P., Cheng, Q., & Yao, L. (2009). Fractal characterization of the spatial distribution of geological point processes. International Journal of Applied Earth Observation and Geoinformation, 11(6), 394–402.

    Google Scholar 

  • Zuo, R., & Wang, J. (2016). Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration, 164, 33–41.

    Google Scholar 

  • Zuo, R., Xia, Q., & Zhang, D. (2013). A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas. Applied Geochemistry, 33, 165–172.

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support provided by the School of Mining Engineering, University of Tehran. We also express our sincere thanks to the National Iranian Copper Industries Company (NICICo) for providing required data. We express our deep gratitude to the all geologists and exploration experts that cooperated to enhance the results of this analysis. Finally, we thank Prof. Carranza and two reviewers for reading the paper precisely and patiently and for their constructive and valuable comments, which indeed helped us to improve the quality of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maysam Abedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elyasi, GR., Bahroudi, A., Abedi, M. et al. Weighted Photolineaments Factor (WPF): An Enhanced Method to Generate a Predictive Structural Evidential Map with Low Uncertainty, a Case Study in Chahargonbad Area, Iran. Nat Resour Res 29, 2881–2913 (2020). https://doi.org/10.1007/s11053-020-09658-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09658-8

Keywords

Navigation