Skip to main content

Advertisement

Log in

Multi-objective Freshwater Management in Coastal Aquifers Under Uncertainty in Hydraulic Parameters

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

This paper proposes a novel stochastic framework for groundwater quantity and quality management in aquifers threatened by saltwater intrusion. In this methodology, a finite difference SEAWAT code is linked with an optimization model to solve density-dependent groundwater flow equations considering different patterns of pumping rates. To reduce the computational time of the simulation–optimization process especially when there are a high number of decision variables, a modular evolutionary polynomial regression (MEPR) model is developed and coupled with the optimization algorithm. The info-gap theory is utilized to evaluate the robustness of optimal scenarios incorporating the uncertainty of hydraulic conductivity (k) of the heterogeneous aquifer. For each management scenario proposed by the simulation–optimization model, values of robustness and opportuneness indices are computed based on utility functions of different agricultural sectors. The results of applying the proposed method to the Qom aquifer in Iran show that coupling MEPR model with the simulation–optimization model considering the uncertainty of the aquifer parameter k could provide a reliable management scenario with a comparatively low computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Notes

  1. Finite element model for groundwater.

References

  • Abarca, E., Vazquez-Sune, E., Carrera, J., Capino, B., Gámez, D., & Batlle, F. (2006). Optimal design of measures to correct seawater intrusion. Water Resources Research,42(9), W09415.

    Article  Google Scholar 

  • Abd-Elhamid, H. F., & Javadi, A. A. (2011). A cost-effective method to control seawater intrusion in coastal aquifers. Water Resources Management,25(11), 2755–2780.

    Article  Google Scholar 

  • Alizadeh, Z., & Mahjouri, N. (2017) A spatiotemporal Bayesian maximum entropy-based methodology for dealing with sparse data in revising groundwater quality monitoring networks: The Tehran region experience. Environmental Earth Sciences, 76(12), 436.

    Article  Google Scholar 

  • Ben-Haim, Y. (2001). Information-gap decision theory: Decisions under severe uncertainty. San Diego, CA: Academic Press.

    Google Scholar 

  • Bhattacharjya, R. K., & Datta, B. (2005). Optimal management of coastal aquifers using linked simulation optimization approach. Water Resources Management,19(3), 295–320.

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,6(2), 182–197.

    Article  Google Scholar 

  • Draper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). New York: Wiley.

    Book  Google Scholar 

  • Faramarzi, A., Alani, A. M., & Javadi, A. A. (2014). An EPR-based self-learning approach to material modelling. Computers & Structures,137, 63–71.

    Article  Google Scholar 

  • Ghodsi, S. H., Kerachian, R., MalakpourEstalaki, S., Nikoo, M. R., & Zahmatkesh, Z. (2016). Developing a stochastic conflict resolution model for urban runoff quality management: Application of info-gap and bargaining theories. Journal of Hydrology,533, 200–212.

    Article  Google Scholar 

  • Giustolisi, O., Doglioni, A., Savic, D. A., & Webb, B. W. (2007). A multi-model approach to analysis of environmental phenomena. Environmental Modelling and Software,22(5), 674–682.

    Article  Google Scholar 

  • Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). MODFLOW-2000, the U. S. geological survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. Open-file report. U. S. Geological Survey, (92), 134.

  • Harne, S., Chaube, U. C., Sharma, S., Sharma, P., & Parkhya, S. (2006). Mathematical modelling of salt water transport and its control in groundwater. Natural and Science,4(4), 32–39.

    Google Scholar 

  • He, X., Højberg, A. L., Jørgensen, F., & Refsgaard, J. C. (2015). Assessing hydrological model predictive uncertainty using stochastically generated geological models. Hydrological Processes,29, 4293–4311.

    Article  Google Scholar 

  • Hine, D., & Hall, J. W. (2010). Information gap analysis of flood model uncertainties and regional frequency analysis. Water Resources Research,46(1), W01514.

    Article  Google Scholar 

  • Hussain, M. S., Javadi, A. A., Ahangar-Asr, A., & Farmani, R. (2015). A surrogate model for simulation–optimization of aquifer systems subjected to seawater intrusion. Journal of Hydrology,523, 542–554.

    Article  Google Scholar 

  • Javadi, A. A., Abd-Elhamid, H. F., & Farmani, R. (2011). A simulation-optimization model to control seawater intrusion in coastal aquifers using abstraction/recharge wells. International Journal for Numerical and Analytical Methods in Geomechanics, 36(16), 1757–1779.

    Article  Google Scholar 

  • Ketabchi, H., & Ataie-Ashtiani, B. (2015). Coastal groundwater optimization—Advances, challenges, and practical solutions. Hydrogeology Journal,23(6), 1129–1154.

    Article  Google Scholar 

  • Kourakos, G., & Mantoglou, A. (2009). Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models. Advances in Water Resources,32(4), 507–521.

    Article  Google Scholar 

  • Langevin, C. D., Thorne Jr, D. T., Dausman, A. M., Sukop, M. C., & Guo, W. (2008). SEAWAT version 4: A computer program for simulation of multi-species solute and heat transport (No. 6-A22). Geological Survey (US).

  • Lin, H. J., Rechards, D. R., Talbot, C. A., Yeh, G. T., Cheng, J. R., Cheng, H. P., et al. (1997). A three-dimensional finite-element computer model for simulating density-dependent flow and transport in variable saturated media: version 3.1. Vicksburg, MS: US Army Engineering Research and Development Center.

    Google Scholar 

  • Masoumi, F., & Kerachian, R. (2008). Assessment of the groundwater salinity monitoring network of the Tehran region: Application of the discrete entropy theory. Water Science and Technology, 58(4), 765–771.

    Article  Google Scholar 

  • Matrosov, E. S., Woods, A. M., & Harou, J. J. (2013). Robust decision making and info-gap decision theory for water resource system planning. Journal of Hydrology,494, 43–58.

    Article  Google Scholar 

  • Qahman, K., Larabi, A., Ouazar, D., Ahmed, N. A. J. I., & Alexander, H. D. C. (2009). Optimal extraction of groundwater in Gaza coastal aquifer. Journal of Water Resource and Protection,1(04), 249.

    Article  Google Scholar 

  • Qom Regional Water Company. (2011). The quality and quantity study of groundwater flow in the Qom-Kahak aquifer. Technical report(in Persian).

  • Quinlan, R. J. (1992). Learning with continuous classes. In 5th Australian joint conference on artificial intelligence.

  • Rajabi, A. M. (2018). A numerical study on land subsidence due to extensive overexploitation of groundwater in Aliabad plain, Qom-Iran. Natural Hazards,93(2), 1085–1103.

    Article  Google Scholar 

  • Ranjbar, A., & Mahjouri, N. (2018). Development of an efficient surrogate model based on aquifer dimensions to prevent seawater intrusion in anisotropic coastal aquifers, case study: the Qom aquifer in Iran. Environmental Earth Sciences,77(11), 418.

    Article  Google Scholar 

  • Rastogi, A. K., Choi, G. W., & Ukarande, S. K. (2004). Diffused interface model to prevent ingress of sea water in multi-layer coastal aquifers. Journal of Spatial Hydrology,4(2), 1–31.

    Google Scholar 

  • Refsgaard, J. C., Christensen, S., Sonnenborg, D. S., Hojberg, A. L., & Troldborg, L. (2012). Review of strategies for handling geological uncertainty in groundwater flow and transport modeling. Advances in Water Resources,36, 36–50.

    Article  Google Scholar 

  • Roach, T., Kapelan, Z., & Ledbetter, R. (2015). Comparison of info-gap and robust optimisation methods for integrated water resource management under severe uncertainty. Procedia Engineering,119, 874–883.

    Article  Google Scholar 

  • Scholze, O., Hillmer, G., & Schneider, W. (2002). Protection of the groundwater resources of Metropolis CEBU (Philippines) in consideration of saltwater intrusion into the coastal aquifer. In 17th saltwater intrusion meeting, Delft, The Netherlands.

  • Sedki, A., & Ouazar, D. (2011). Simulation–optimization modeling for sustainable groundwater development: A Moroccan coastal aquifer case study. Water Resources Management,25(11), 2855–2875.

    Article  Google Scholar 

  • Sherif, M. M., & Hamza, K. I. (2001). Mitigation of seawater intrusion by pumping brackish water. Transport in Porous Media,43(1), 29–44.

    Article  Google Scholar 

  • Sherif, M., & Kacimov, A. (2008). Pumping of brackish and saline water in coastal aquifers: An effective tool for alleviation of seawater intrusion. In 20th Salt Water Intrusion Meeting (SWIM), Naples, Florida, USA.

  • Soltani, M., Kerachian, R., Nikoo, M. R., & Noory, H. (2018). Planning for agricultural return flow allocation: Application of info-gap decision theory and a nonlinear CVaR-based optimization model. Environmental Science and Pollution Research, 25(25), 25115–25129.

    Article  Google Scholar 

  • Sreekanth, J., & Datta, B. (2010). Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. Journal of Hydrology,393(3), 245–256.

    Article  Google Scholar 

  • Voss, C. I., & Provost, A. M. (2010). SUTRA: A model for saturated–unsaturated, variable-density groundwater flow with solute or energy transport. US Geological Survey on water resources, investigations report 02-4231.

  • Wang, Y., & Witten, I. H. (1996). Induction of model trees for predicting continuous classes. (Working paper 96/23). Hamilton: Department of Computer Science, University of Waikato.

    Google Scholar 

  • Werner, A. D., Bakker, M., Post, V. E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., et al. (2013). Seawater intrusion processes, investigation and management: Recent advances and future challenges. Advances in Water Resources,51, 3–26.

    Article  Google Scholar 

  • Zheng, C., & Wang, P. P. (1999). MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems. Documentation and user’s guide. Tuscaloosa: Alabama University.

    Google Scholar 

  • Zischg, J., Goncalves, M. L., Bacchin, T. K., Leonhardt, G., Viklander, M., van Timmeren, A., et al. (2017). Info-Gap robustness pathway method for transitioning of urban drainage systems under deep uncertainties. Water Science and Technology,76(5), 1272–1281.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmeh Mahjouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, A., Mahjouri, N. Multi-objective Freshwater Management in Coastal Aquifers Under Uncertainty in Hydraulic Parameters. Nat Resour Res 29, 2347–2368 (2020). https://doi.org/10.1007/s11053-019-09585-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09585-3

Keywords

Navigation