Skip to main content

Advertisement

Log in

Chemometric Differentiation of Oil Families and Their Potential Source Rocks in the Gulf of Suez

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

An oil–oil and oil–source rock correlation study was carried out using chemometric methods applied to geochemical data for 123 Upper Cretaceous—Lower Miocene putative source rock and 46 crude oil samples from the Gulf of Suez Rift basin. The Gulf of Suez has many organic-rich intervals. The pre-rift source units, such as the Brown Limestone and Thebes formations, contain very good-to-excellent organic content, whereas the Miocene rocks are rated fair to good. HI and Tmax pyrolysis data indicate variable kerogen type and maturation histories where most of the analyzed samples occur along the Type II and Type II/III kerogen pathways from immature to the main stage of oil window with %Ro < 0.9. Carbon isotope ratios’ biomarker data for the bitumen samples indicate predominantly anoxic source rock depositional conditions with substantial algal/bacterial marine and a minor terrigenous organic matter. The Gulf of Suez oils exhibit a wide range of chemical composition from heavy-to-medium gravity and moderate-to-high sulfur content. These oils originated from carbonate/marl source rocks rich in lipids from phytoplankton/benthic algae and bacteria with less contribution of terrigenous organic debris, deposited under anoxic conditions with different thermal maturity histories equivalent to at least the early oil window. Chemometrics using 16 source-related biomarker and isotope ratios identifies six genetic families in the Gulf of Suez. The oil families share common characteristics where the precursor organic matter was deposited in a restricted marine environment with limited land-derived organic matter. The major factor that greatly modifies oil composition in the Gulf of Suez is thermal maturation. However, migration history and spatial and temporal organofacies’ variations of the presumed source rocks are also important. The overall geochemical similarity of the Gulf of Suez oils confirms the mixed nature of these fluids and suggests that no single source rock horizon is likely to have sourced the oil in this promising province. Based on oil–source correlation data and a decision tree chemometric model, the Brown Limestone, Esna, Thebes, and Nukhul formations are the effective source rocks for oil families III, IV, and V, whereas none of the source rock extracts has been assigned for Family I or VI oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Alizadeh, B., Alipour, M., Chehrazi, A., & Mirzaie, S. (2017). Chemometric classification and geochemistry of oils in the Iranian sector of the southern Persian Gulf Basin. Organic Geochemistry,111, 67–81.

    Google Scholar 

  • Alsharhan, A. S. (2003). Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt. American Association of Petroleum Geologists Bulletin,87(1), 143–180.

    Google Scholar 

  • Alsharhan, A. S., & Salah, M. G. (1994). Geology and hydrocarbon habitat in a rift setting: southern Gulf of Suez, Egypt. Bulletin of Canadian Petroleum Geology,42(3), 312–331.

    Google Scholar 

  • Alsharhan, A. S., & Salah, M. G. (1995). Geology and hydrocarbon habitat in rift setting: northern and central Gulf of Suez, Egypt. Bulletin of Canadian Petroleum Geology,43(2), 156–176.

    Google Scholar 

  • Alsharhan, A. S., & Salah, M. G. (1997). A common source rock for Egyptian and Saudi hydrocarbons in the Red Sea. American Association of Petroleum Geologists Bulletin,81(10), 1640–1659.

    Google Scholar 

  • Angelier, J. (1985). Extension and rifting: the Zeit region, Gulf of Suez. Journal of Structural Geology,7(5), 605–612.

    Google Scholar 

  • Aquino Neto, F. R., Restlé, A., Connan, J., Albrecht, P., & Ourisson, G. (1982). Novel tricyclic terpanes (C19, C20) in sediments and petroleums. Tetrahedron Letters,23, 2027–2030.

    Google Scholar 

  • Aquino Neto, F. R., Trendel, J. M., Restle, A., Connan, J., & Albrecht, P. A. (1983). Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleum. In M. Bjorøy, C. Albrecht, & C. Cornford (Eds.), Advance in organic geochemistry 1981 (pp. 659–676). New York: Wiley.

    Google Scholar 

  • Bakr, M. Y., & Wilkes, H. (2002). The influence of facies and depositional environment on the occurrence and distribution of carbazoles and benzocarbazoles in crude oils: a case study from the Gulf of Suez, Egypt. Organic Geochemistry,33, 561–580.

    Google Scholar 

  • Barakat, A. O., Mostafa, A., El-Gayar, M. S., & Rullkötter, J. (1997). Source-dependent biomarker properties of five crude oils from the Gulf of Suez, Egypt. Organic Geochemistry,26, 441–450.

    Google Scholar 

  • Barakat, A. O., Mostafa, A. R., Qian, Y., Kim, M., & Kennicutt, M. C., II. (2005). Organic geochemistry indicates Gebel El Zeit, Gulf of Suez is a source of bitumen used in some Egyptian mummies. Geoarchaeology,20(3), 211–228.

    Google Scholar 

  • Béhar, F., Beaumont, V., & Penteado, H.L. De B. (2001). Rock-Eval 6 technology: Performances and developments. Oil and Gas Science and Technology, 56(2), 111–134.

    Google Scholar 

  • Bosence, D. (2012). Carbonate-dominated marine rifts. In D. G. Roberts & A. W. Bally (Eds.), Regional geology and tectonics: Phanerozoic rift systems and sedimentary basins (pp. 105–130). Amsterdam: Elsevier.

    Google Scholar 

  • Bosworth, W. (1985). Geometry of propagating continental rifts. Nature,316(15), 625–627.

    Google Scholar 

  • Bosworth, W. (1995). A high-strain rift model for the southern Gulf of Suez (Egypt). In J. J. Lambaise (Ed.), Hydrocarbon habitat in rift basins (Vol. 80, pp. 75–112). London: Geological Society of London, Special Publication.

    Google Scholar 

  • Bosworth, W. (2015). Geological evolution of the Red Sea: Historical background, review, and synthesis. In N. M. A. Rasul & I. C. F. Stewart (Eds.), The Red Sea (pp. 45–78). Berlin: Springer.

    Google Scholar 

  • Bosworth, W., Crevello, P., Winn, R. D., Jr., & Steinmetz, J. (1998). Structure, sedimentation, and basin dynamics during rifting of the Gulf of Suez and northwestern Red Sea. In B. H. Purser & D. W. J. Bosence (Eds.), Sedimentation and tectonics of rift basins: Red Sea-Gulf of Aden (pp. 77–96). London: Chapman and Hall.

    Google Scholar 

  • Bosworth, W., & Durocher, S. (2017). Present-day stress fields of the Gulf of Suez (Egypt) based on exploratory well data: Non-uniform regional extension and its relation to inherited structures and local plate motion. Journal of African Earth Sciences,136, 136–147.

    Google Scholar 

  • Bosworth, W., Khalil, S., Clare, A., Comisky, J., Abdelal, H., Reed, T., et al. (2014). Integration of outcrop and subsurface data during the development of a naturally fractured Eocene carbonate reservoir at the East Ras Budran concession, Gulf of Suez, Egypt. In G. H. Spence, J. Redfern, R. Aguilera, T. G. Bevan, J. W. Cosgrove, G. D. Couples, & J.-M. Daniel (Eds.), Advances in the study of fractured reservoirs (Vol. 374, pp. 333–359). London: Geological Society of London, Special Publications.

    Google Scholar 

  • Bosworth, W., & McClay, K. (2001). Structural and stratigraphic evolution of the Gulf of Suez rift, Egypt: A synthesis. In P. A. Ziegler, W. Cavazza, A. H. F. Robertson, & S. Crasquin-Soleau (Eds.), Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins (Vol. 186, pp. 567–606). Paris: Memoires du Muséum National d’Histoire Naturelle de Paris.

    Google Scholar 

  • Bosworth, W., & Stockli, D. F. (2016). Early magmatism in the greater Red Sea rift: timing and significance. Canadian Journal of Earth Sciences,53, 1–19.

    Google Scholar 

  • Brassell, S. C., Sheng, G., Fu, J., & Eglinton, G. (1988). Biological markers in lacustrine Chinese oil shales. In A. J. Fleet, K. Kelts, & M. R. Talbot (Eds.), Lacustrine petroleum source rocks (Vol. 40, pp. 299–308). London: Geological Society of London, Special Publication.

    Google Scholar 

  • Carvajal-Ortiz, H., & Gentzis, T. (2015). Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: Data quality revisited. International Journal of Coal Geology,152, 113–122.

    Google Scholar 

  • Clark, J. P., & Philp, R. P. (1989). Geochemical characterization of evaporite and carbonate depositional environments and correlation of associated crude oils in the Black Creek Basin, Alberta. Bulletin of Canadian Petroleum Geology,37, 401–416.

    Google Scholar 

  • Colletta, B., Le Quellec, P., Letouzy, J., & Moretti, I. (1988). Longitudinal evolution of the Suez rift structure (Egypt). Tectonophysics,153, 221–233.

    Google Scholar 

  • Collister, J. W., & Wavrek, D. A. (1996). δ13C compositions of saturate and aromatic fractions of lacustrine oils and bitumens: Evidence for water column stratification. Organic Geochemistry,24, 913–920.

    Google Scholar 

  • Connan, J., & Cassou, A. M. (1980). Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochimica et Cosmochimica Acta,44(1), 1–23.

    Google Scholar 

  • Cornford, C., Gardner, P., & Burgess, C. (1998). Geochemical truths in large data sets. I: Geochemical screening data. Organic Geochemistry,29(1–3), 519–530.

    Google Scholar 

  • Dahl, J. E., Moldowan, J. M., Teerman, S. C., McCaffrey, M. A., Sundararaman, P., & Stelting, C. E. (1994). Source rock quality determination from oil biomarkers I: A new geochemical technique. American Association of Petroleum Geologists Bulletin,78, 1507–1526.

    Google Scholar 

  • Darwish, M., & El-Araby, A. M. (1993). Petrography and diagenetic aspects of some siliciclastic hydrocarbon reservoirs in relation to the rifting of the Gulf of Suez. In E. Philobbos & B. H. Purser (Eds.), Geodynamics and sedimentation of the Red Sea-Gulf of Aden Rift System (Vol. 1, pp. 155–189). Geological survey of Egypt: Special Publication.

    Google Scholar 

  • de Grande, S. M. B., Aquino Neto, F. R., & Mello, M. R. (1993). Extended tricyclic terpanes in sediments and petroleums. Organic Geochemistry,20(7), 1039–1047.

    Google Scholar 

  • Dembicki, H., Jr. (2009). Three common source rock evaluation errors made by geologists during prospect or play appraisals. American Association of Petroleum Geologists Bulletin,93, 341–356.

    Google Scholar 

  • Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., & Eglinton, G. (1978). Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature,272, 216–222.

    Google Scholar 

  • El Atfy, H., Brocke, R., Uhl, D., Ghassal, B., Stock, A. T., & Littke, R. (2014). Source rock potential and paleoenvironment of the Miocene Rudeis and Kareem formations, Gulf of Suez, Egypt: An integrated palynofacies and organic geochemical approach. International Journal of Coal Geology,131, 326–343.

    Google Scholar 

  • El Diasty, W. Sh. (2015). Khatatba Formation as an active source rock for hydrocarbons in the northeast Abu Gharadig Basin, north Western Desert, Egypt. Arabian Journal of Geosciences,8(4), 1903–1920.

    Google Scholar 

  • El Diasty, W. Sh., El Beialy, S. Y., Abo Ghonaim, A. A., Mostafa, A. R., & El Atfy, H. (2014). Palynology, palynofacies and petroleum potential of the Upper Cretaceous-Eocene Matulla, Brown Limestone and Thebes formations, Belayim oilfields, central Gulf of Suez, Egypt. Journal of African Earth Sciences,95, 155–167.

    Google Scholar 

  • El Diasty, W. Sh., El Beialy, S. Y., Anwari, T. A., Peters, K. E., & Batten, D. J. (2017a). Organic geochemistry of the Silurian Tanezzuft Formation and crude oils, NC115 Concession, Murzuq Basin, southwest Libya. Marine and Petroleum Geology,86, 367–385.

    Google Scholar 

  • El Diasty, W. Sh., El Beialy, S. Y., El Attar, R. M., Khairy, A., Peters, K. E., & Batten, D. J. (2019). Oil–source correlation in the West Esh El Mellaha, southwestern margin of the Gulf of Suez rift, Egypt. Journal of Petroleum Science and Engineering,180, 844–860.

    Google Scholar 

  • El Diasty, W. Sh., El Beialy, S. Y., Mahdi, A. Q., & Peters, K. E. (2016). Geochemical characterization of source rocks and oils from northern Iraq: Insights from biomarker and stable carbon isotope investigations. Marine and Petroleum Geology,77, 1140–1162.

    Google Scholar 

  • El Diasty, W. Sh., El Beialy, S. Y., Mostafa, A. R., Abo Ghonaim, A. A., & Peters, K. E. (2015a). Crude oil geochemistry and source rock potential of the Upper Cretaceous-Eocene succession in the Belayim oilfields, Central Gulf of Suez, Egypt. Journal of Petroleum Geology,38(2), 193–215.

    Google Scholar 

  • El Diasty, W. Sh., El Beialy, S. Y., Mostafa, A. R., El Adl, H. A., & Batten, D. J. (2017b). Hydrocarbon source rock potential in the southwestern Gulf of Suez graben: Insights from organic geochemistry and palynofacies studies on well samples from the Ras El Bahar Oilfield. Marine and Petroleum Geology,80, 133–153.

    Google Scholar 

  • El Diasty, W. Sh., El Beialy, S. Y., Peters, K. E., Batten, D. J., Al-Beyati, F. M., Mahdi, A. Q., et al. (2018). Organic geochemistry of the Middle-Upper Jurassic Naokelekan Formation in the Ajil and Balad oil fields, northern Iraq. Journal of Petroleum Science and Engineering,166, 350–362.

    Google Scholar 

  • El Diasty, W. Sh., Moldowan, J. M., Peters, K. E., Essa, G. I., & Hammad, M. M. (2019b). Organic geochemistry of condensates and natural gases in the northwest Nile Delta offshore Egypt. Journal of Petroleum Science and Engineering (submitted).

  • El Diasty, W. Sh., Mostafa, A. R., El Beialy, S. Y., El Adl, H. A., & Edwards, K. J. (2015b). Organic geochemical characteristics of the Upper Cretaceous-Early Paleogene source rock and correlation with some Egyptian mummy bitumen and oil from the southern Gulf of Suez, Egypt. Arabian Journal of Geosciences,8(11), 9193–9204.

    Google Scholar 

  • El Diasty, W. Sh., & Peters, K. E. (2014). Genetic classification of oil families in the central and southern sectors of the Gulf of Suez, Egypt. Journal of Petroleum Geology,37, 105–126.

    Google Scholar 

  • El-Shafeiy, M., Birgel, D., El-Kammar, A., El-Barkooky, A., Wagreich, M., Tahoun, S., et al. (2017). Integrated palaeo-environmental proxies of the Campanian to Danian organic-rich Quseir section, Egypt. Marine and Petroleum Geology,86, 771–786.

    Google Scholar 

  • Elzarka, M. H., & Mostafa, A. R. (1988). Oil prospects of the Gulf of Suez, Egypt–A case study. Organic Geochemistry,12(2), 109–121.

    Google Scholar 

  • Espitalié, J., Deroo, G., & Marquis, F. (1985). La pyrolyse Rock-Eval et ses applications and developments. Revue de l’Institut Français du Pétrole,40, 563–580.

    Google Scholar 

  • Espitalié, J., La Porte, J. L., Madec, M., Marquis, F., Le Plat, P., Paulet, J., et al. (1977). Methode rapide de characterisation des roches meres de leur potential petrolier et deleur degre d’evolution. Revue de l’Institut Français du Petrole,32, 23–42.

    Google Scholar 

  • Evans, A. L. (1988). Neogene tectonic and stratigraphic events in the Gulf of Suez rift area. Egypt. Tectonophysics,153, 235–247.

    Google Scholar 

  • Garfunkel, Z., & Bartov, Y. (1977). The tectonics of the Suez Rift. Geological Survey of Israel Bulletin,71, 44.

    Google Scholar 

  • Grice, K., Schouten, S., Peters, K. E., & Sinninghe Damsté, J. S. (1998). Molecular isotopic characterisation of hydrocarbon biomarkers in Palaeocene-Eocene evaporitic, lacustrine source rocks from the Jianghan Basin, China. Organic Geochemistry,29, 1745–1764.

    Google Scholar 

  • Huang, W.-Y., & Meinschein, W. G. (1979). Sterols as ecological indicators. Geochimica et Cosmochimica Acta,43(5), 739–745.

    Google Scholar 

  • Hughes, W. B., Holba, A. G., & Dzou, L. I. P. (1995). The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimica et Cosmochimica Acta,59, 3581–3598.

    Google Scholar 

  • Hunt, J. M. (1996). Petroleum geochemistry and geology (p. 743). New York: Freeman and Company.

    Google Scholar 

  • Katz, B. J. (1995). A survey of rift basin source rocks. In J. J. Lambiase (Ed.), Hydrocarbon habitat in rift basins (Vol. 80, pp. 213–242). London: Geological Society of London, Special Publication.

    Google Scholar 

  • Khalil, S. M., & McClay, K. R. (2001). Tectonic evolution of the NW Red Sea-Gulf of Suez rift system. In R. C. L. Wilson, R. B. Whitmarsh, B. Taylor, & N. Froitzheim (Eds.), Non-volcanic rifting of continental margins: A comparison of evidence from land and sea (Vol. 187, pp. 453–473). London: Geological Society of London, Special Publication.

    Google Scholar 

  • Khalil, S. M., & McClay, K. R. (2016). 3D geometry and kinematic evolution of extensional fault-related folds, NW Red Sea, Egypt. In C. Childs, R. E. Holdsworth, C. A.-L. Jackson, T. Manzocchi, J. J. Walsh, & G. Yielding (Eds.), The geometry and growth of normal faults (Vol. 439, pp. 109–130). London: Geological Society of London, Special Publication.

    Google Scholar 

  • Khavari-Khorasani, G., Michelsen, J. K., & Dolson, J. C. (1998). The factors controlling the abundance and migration of heavy vs. light oils, as constrained by data from the Gulf of Suez. Part I: The effect of expelled petroleum composition, PVT properties and petroleum system geometry. Organic Geochemistry,29, 255–282.

    Google Scholar 

  • Kolaczkowska, E., Slougui, N. E., Watt, D. S., Maruca, R. E., & Moldowan, J. M. (1990). Thermodynamic stability of various alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers using molecular mechanics calculations. Organic Geochemistry,16(4–6), 1033–1038.

    Google Scholar 

  • Lafargue, E., Marquis, F., & Pillot, D. (1998). Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l’Institut Français du Pétrole,53(4), 421–437.

    Google Scholar 

  • Lambaise, J. J., & Bosworth, W. (1995). Structural controls on sedimentation in continental rifts. In J. J. Lambaise (Ed.), Hydrocarbon Habitat in Rift Basins (Vol. 80, pp. 117–144). London: Geological Society of London, Special Publications.

    Google Scholar 

  • Lewan, M. D. (1984). Factors controlling the proportionality of vanadium to nickel in crude oils. Geochimica et Cosmochimica Acta,48, 2231–2238.

    Google Scholar 

  • Mackenzie, A. S., & McKenzie, D. (1983). Isomerization and aromatization of hydrocarbons in sedimentary basins formed by extension. Geological Magazine,120, 417–470.

    Google Scholar 

  • Mango, F. D. (1990). The origin of light cycloalkanes in petroleum. Geochimica et Comochimica Acta,54(1), 23–27.

    Google Scholar 

  • McClay, K. R., Nichols, G. J., Khalil, S. M., Darwish, M., & Bosworth, W. (1998). Extensional tectonics and sedimentation, eastern Gulf of Suez, Egypt. In B. H. Purser & D. W. J. Bosence (Eds.), Sedimentation and tectonics in rift basins: Red Sea—Gulf of Aden (pp. 211–238). London: Chapman Hall.

    Google Scholar 

  • Mello, M. R., Telneas, N., Gaglianone, P. C., Chicarelli, M. J., Brassell, S. J., & Maxwell, J. R. (1988). Organic geochemical characterization of depositional paleoenvironments of source rocks and oils in Brazilian marginal basins. Organic Geochemistry,13, 31–45.

    Google Scholar 

  • Moldowan, J. M., Dahl, J., Huizinga, B. J., Fago, F. J., Hickey, L. J., Peakman, T. M., et al. (1994). The molecular fossil record of oleanane and its relation to angiosperms. Science,265, 768–771.

    Google Scholar 

  • Moldowan, J. M., Fago, F. J., Carlson, R. M. K., Young, D. C., Van Duyne, G., Clardy, J., et al. (1991). Rearranged hopanes in sediments and petroleum. Geochimica et Cosmochimica Acta,55, 3333–3353.

    Google Scholar 

  • Moldowan, J. M., Fago, F., Lee, C. Y., Jacobson, S. R., Watt, D. S., Slougui, N., et al. (1990). Sedimentary 24-n-propylcholestanes, molecular fossils diagnostic of marine algae. Science,247, 309–312.

    Google Scholar 

  • Moldowan, J. M., Seifert, W. K., & Gallegos, E. J. (1985). Relationship between petroleum composition and depositional environment of petroleum source rocks. American Association of Petroleum Geologists Bulletin,69, 1255–1268.

    Google Scholar 

  • Moldowan, J. M., Sundararaman, P., & Schoell, M. (1986). Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany. Organic Geochemistry,10, 915–926.

    Google Scholar 

  • Moretti, I., & Chénet, P. Y. (1987). The evolution of the Suez rift: a combination of stretching and secondary convection. Tectonophysics,133, 229–234.

    Google Scholar 

  • Moretti, I., & Colletta, B. (1987). Spatial and temporal evolution of the Suez Rift subsidence. Journal of Geodynamics,7, 151–168.

    Google Scholar 

  • Morley, C. K., Nelson, R. A., Patton, T. L., & Munn, S. G. (1990). Transfer zones in the East African Rift System and their relevance to hydrocarbon exploration in rifts. American Association of Petroleum Geologists Bulletin,74(8), 1234–1253.

    Google Scholar 

  • Mostafa, A. R. (1993). Organic geochemistry of source rocks and related crude oils in the Gulf of Suez. Egypt. Berliner Geowissenschaftliche Abhandlungen, A,147, 163.

    Google Scholar 

  • Mostafa, A. R. (1999). Organic geochemistry of the Cenomanian-Turonian sequence at Bakr Area, Gulf of Suez. Egypt. Petroleum Geoscience,5, 43–50.

    Google Scholar 

  • Moustafa, A. M. (1976). Block faulting in the Gulf of Suez. In Proceedings of the 5th Egyptian General Petroleum Corporation Exploration Seminar (p. 35).

  • Moustafa, A. R. (2002). Controls on the geometry of transfer zones in the Suez rift and northwest Red Sea: Implications for the structural geometry of rift systems. American Association of Petroleum Geologists Bulletin,86(6), 979–1002.

    Google Scholar 

  • Moustafa, A. R., & Khalil, H. M. (1995). Superposed deformation in the northern Suez Rift, Egypt: relevance to hydrocarbons exploration. Journal of Petroleum Geologists,18(3), 245–266.

    Google Scholar 

  • Mukhopadhyay, P. K., Wade, J. A., & Kruge, M. A. (1995). Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil-source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada. Organic Geochemistry,22, 85–104.

    Google Scholar 

  • Ourisson, G., Albrecht, P., & Rohmer, M. (1984). The microbial origin of fossil fuels. Scientific American,251(2), 44–51.

    Google Scholar 

  • Ourisson, G., Albrecth, P., & Rohmer, M. (1982). Predictive microbial biochemistry from molecular fossils to procaryotic membranes. Trends in Biochemical Sciences,7, 236–239.

    Google Scholar 

  • Palacas, G. P., Anders, D. E., & King, J. D. (1984). South Florida Basin—A prime example of carbonate source rocks of petroleum. In J. G. Palacas (Ed.), Petroleum geochemistry and source rock potential of carbonate rocks (Vol. 18, pp. 71–96). Tulsa: American Association of Petroleum Geologists, Studies Geology.

    Google Scholar 

  • Patton, T. L., Moustafa, A. R., Nelson, R. A., & Abdine, S. A. (1994). Tectonic evolution and structural setting of the Suez Rift. In S. M. Landon (Ed.), Interior rift basins (Vol. 59, pp. 7–55). Tulsa: American Association of Petroleum Geologists Memoir.

    Google Scholar 

  • Peijs, J. A. M. M., Bevan, T. G., & Piombino, J. T. (2012). The Gulf of Suez rift basin. In D. G. Roberts & A. W. Bally (Eds.), Regional geology and tectonics: Phanerozoic rift systems and sedimentary basins (pp. 165–194). The Netherlands: Elsevier.

    Google Scholar 

  • Peters, K. E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. American Association of Petroleum Geologists Bulletin,70, 318–329.

    Google Scholar 

  • Peters, K. E. (2000). Petroleum tricyclic terpanes: predicted physicochemical behavior from molecular mechanics calculations. Organic Geochemistry,31, 497–507.

    Google Scholar 

  • Peters, K. E., & Cassa, M. R. (1994). Applied source rock geochemistry. In L. B. Magoon & W. G. Dow (Eds.), The petroleum system–from source to trap (Vol. 60, pp. 93–120). Tulsa: American Association of Petroleum Geologists Memoir.

    Google Scholar 

  • Peters, K. E., Coutrot, D., Nouvelle, X., Ramos, L. S., Rohrback, B. G., Magoon, L. B., et al. (2013). Chemometric differentiation of crude oil families in the San Joaquin Basin. California, American Association of Petroleum Geologists Bulletin,97(1), 103–143.

    Google Scholar 

  • Peters, K. E., Fraser, T. H., Amris, W., Rustanto, B., & Hermanto, E. (1999). Geochemistry of crude oils from Eastern Indonesia. American Association of Petroleum Geologists Bulletin,83, 1927–1942.

    Google Scholar 

  • Peters, K. E., & Moldowan, J. M. (1991). Effects of source, thermal maturity, and biodegredation on the distribution and isomerization of homohopanes in petroleum. Organic Geochemistry,17, 47–61.

    Google Scholar 

  • Peters, K. E., Ramos, L. S., Zumberge, J. E., Valin, Z. C., Scotese, C. R., & Gautier, D. L. (2007). Circum-Arctic petroleum systems identified using decision-tree chemometrics. American Association of Petroleum Geologists Bulletin,91, 877–913.

    Google Scholar 

  • Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide (2nd ed., p. 1155). Cambridge: Cambridge University Press.

    Google Scholar 

  • Peters, K. E., Wright, T. L., Ramos, L. S., Zumberge, J. E., & Magoon, L. B. (2016). Chemometric recognition of genetically distinct oil families in the Los Angeles basin, California. American Association of Petroleum Geologists Bulletin,100, 115–135.

    Google Scholar 

  • Philp, R. P. (1985). Fossil fuel biomarkers: Applications and spectra (p. 294). Amsterdam: Elsevier Science Publishers B.V.

    Google Scholar 

  • Purser, B. H., & Bosence, D. W. J. (1998). Organization and scientific contributions in sedimentation and tectonics of rift basins: Red Sea-Gulf of Aden. In B. H. Purser & D. W. J. Bosence (Eds.), Sedimentation and tectonics in rift basins (pp. 3–8). London: Chapman and Hall.

    Google Scholar 

  • Radke, M., & Welte, D. H. (1983). The methylphenantrene index (MPI): a maturity parameter based on aromatic hydrocarbons. In M. Bjorøy, C. Albrecht, C. Cornford, K. de Groot, G. Eglinton, E. Galimov, D. Leythaeuser, R. Pelet, J. Rullkoetter, & G. Speers (Eds.), Advances in organic geochemistry (pp. 504–512). New York: Wiley.

    Google Scholar 

  • Richardson, M., & Arthur, M. A. (1988). The Gulf of Suez-northern Red Sea Neogene rift: A quantitative basin analysis. Marine and Petroleum Geology,5(3), 247–270.

    Google Scholar 

  • Robinson, V., & Engel, M. (1993). Characterization of the source horizons within the Late Cretaceous transgressive sequence of Egypt. In B. Katz & L. Pratt (Eds.), Source rocks in a sequence stratigraphic framework (pp. 101–117). Tulsa: American Association of Petroleum Geologists, Studies in Geology.

    Google Scholar 

  • Robison, V. D. (1995). Source rock characterization of the Late Cretaceous Brown Limestone of Egypt. In B. Katz (Ed.), Petroleum source rocks (pp. 265–281). Berlin: Springer.

    Google Scholar 

  • Rohrback, B.G. (1983). Crude oil geochemistry of the Gulf of Suez. In M. Bjorøy, C. Albrecht, C. Cornford, et al., (Eds.), Advances in organic geochemistry, 1981 (pp. 39–48). Chichester: Wiley and Sons, Ltd.

    Google Scholar 

  • Rubinstein, I., Sieskind, O., & Albrecht, P. (1975). Rearranged sterenes in a shale: Occurrence and simulated formation. Journal of the Chemical Society, Perkin Transactions,1, 1833–1836.

    Google Scholar 

  • Schütz, K. I. (1994). Structure and stratigraphy of the Gulf of Suez, Egypt. In S. M. Landon (Ed.), Interior rift basins (Vol. 59, pp. 57–96). Tulsa: American Association of Petroleum Geologists Memoir.

    Google Scholar 

  • Seifert, W. K., & Moldowan, J. M. (1978). Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta,42, 77–95.

    Google Scholar 

  • Seifert, W. K., & Moldowan, J. M. (1979). The effect of biodegradation of steranes and terpanes in crude oils. Geochimica et Cosmochimica Acta,43, 111–126.

    Google Scholar 

  • Seifert, W. K., & Moldowan, J. M. (1981). Paleoreconstruction by biological markers. Geochimica et Cosmochimica Acta,45(6), 783–794.

    Google Scholar 

  • Seifert, W. K., & Moldowan, J. M. (1986). Use of biological markers in petroleum exploration. In R. B. Johns (Ed.), Methods in geochemistry and geophysics (Vol. 24, pp. 261–290). Amsterdam: Elsevier.

    Google Scholar 

  • Sellwood, B. W., & Netherwood, R. E. (1984). Facies evolution in the Gulf of Suez area: Sedimentation history as an indicator of rift initiation and development. Modern Geology,9, 43–69.

    Google Scholar 

  • Sharaf, L. M., El Leboudy, M. M., & Shahin, A. N. (2007). Oil families and their potential sources in the southern Gulf of Suez. Egypt. Petroleum Science and Technology,25, 539–559.

    Google Scholar 

  • Sinninghe Damsté, J. S., Eglinton, T. I., De Leeuw, J. W., & Schenck, P. A. (1989). Organic sulphur in macromolecular sedimentary organic matter: I. Structure and origin of sulphur-containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrolysis. Geochimica et Cosmochimica Acta,53(4), 873–889.

    Google Scholar 

  • Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten, S., Hayes, J., et al. (1995). Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta,59, 1895–1900.

    Google Scholar 

  • Sofer, Z. (1980). Preparation of carbon dioxide for stable carbon isotope analysis of petroleum fractions. Analytical Chemistry,52, 1389–1391.

    Google Scholar 

  • Sofer, Z. (1984). Stable carbon isotope composition of crude oils: Application to source depositional environments and petroleum alteration. American Association of Petroleum Geologists Bulletin,68(1), 31–49.

    Google Scholar 

  • Steckler, M. S. (1985). Uplift and extension of the Gulf of Suez. Nature,317, 135–139.

    Google Scholar 

  • Steckler, M. S., Berthelot, F., Lyberis, N., & Le Pichon, X. (1988). Subsidence in the Gulf of Suez: implications for rifting and plate kinematics. Tectonophysics,153, 249–270.

    Google Scholar 

  • Subroto, E. A., Alexander, R., & Kagi, R. I. (1991). 30-Norhopanes: their occurrence in sediments and crude oils. Chemical Geology,93, 179–192.

    Google Scholar 

  • ten Haven, H. L., de Leeuw, J. W., Rullkötter, J., & Sinninghe Damsté, J. S. (1987). Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature,330, 641–643.

    Google Scholar 

  • Thompson, K. F. M. (1983). Classification and thermal history of petroleum based on light hydrocarbons. Geochimica et Cosmochimica Acta,47, 303–316.

    Google Scholar 

  • Thompson, K. F. M. (1987). Fractionated aromatic petroleums and the generation of gas–condensates. Organic Geochemistry,11, 573–590.

    Google Scholar 

  • Tissot, B. P., & Welte, D. H. (1984). Petroleum formation and occurrence (p. 699). Berlin: Springer.

    Google Scholar 

  • Trendel, J.-M., Restlé, A., Connan, J., & Albrecht, P. (1982). Identification of a novel series of tetracyclic terpene hydrocarbons (C24–C27) in sediments and petroleums. Journal of the Chemical Society, Chemical Communications,5, 304–306.

    Google Scholar 

  • Wang, Y.-P., Zhang, F., Zou, Y.-R., Zhan, Z.-W., & Peng, P. (2016). Chemometrics reveals oil sources in the Fangzheng Fault Depression, NE China. Organic Geochemistry,102, 1–13.

    Google Scholar 

  • Wang, Y.-P., Zou, Y.-R., Shi, J.-T., & Shi, J. (2018). Review of the chemometrics application in oil-oil and oil-source rock correlations. Journal of Natural Gas Geoscience,3, 217–232.

    Google Scholar 

  • Wever, H. E. (1999). A common source rock for Egyptian and Saudi hydrocarbons in the Red Sea: Discussion. American Association of Petroleum Geologists Bulletin,83(5), 802–804.

    Google Scholar 

  • Wever, H. E. (2000). Petroleum and source rock characterization based on C7 plot results: Examples from Egypt. American Association of Petroleum Geologists Bulletin,84(7), 1041–1054.

    Google Scholar 

  • Younes, M. A. (2003). Hydrocarbon seepage generation and migration in the southern Gulf of Suez, Egypt: Insight from biomarker characteristics and source rock modeling. Journal of Petroleum Geology,26(2), 211–224.

    Google Scholar 

  • Younes, A. I., & McClay, K. R. (2002). Development of accommodation zones in the Gulf of Suez—Red Sea rift, Egypt. American Association of Petroleum Geologists Bulletin,86(6), 1003–1026.

    Google Scholar 

  • Younes, M. A., & Philp, R. P. (2005). Source rock characterization based on biological marker distributions of crude oils in the southern Gulf of Suez. Egypt. Journal of Petroleum Geology,28(3), 301–317.

    Google Scholar 

  • Zein El Din, M. Y., Matbouly, S. I., Moussa, S. M., & Abdel Khalek, M. A. (1990). Geochemistry and oil-oil correlations in the Western Desert. In Proceedings of the 10th Egyptian General Petroleum Corporation Exploration and Production Conference, Cairo, Egypt, unpaginated.

  • Zumberge, J. E. (1983). Tricyclic diterpane distributions in the correlation of Paleozoic crude oils from the Williston Basin. In M. Bjorøy (Ed.), Advances in organic geochemistry (pp. 738–745). New York: Wiley.

    Google Scholar 

  • Zumberge, J. E. (1987). Terpenoid biomarker distributions in low maturity crude oils. Organic Geochemistry,11(6), 479–496.

    Google Scholar 

  • Zumberge, J. E., Russell, J. A., & Reid, S. A. (2005). Charging of Elk Hills reservoirs as determined by oil geochemistry. American Association of Petroleum Geologists Bulletin,89, 1347–1371.

    Google Scholar 

Download references

Acknowledgments

The authors thank John and Alex Zumberge (GeoMark Research, Ltd. Houston, TX) for providing essential data, facilitating rock and oil analyses, and technical assistance during the course of this project. Some of the screening and biomarker analyses on rock extracts and oils were conducted at the Department of Applied Geosciences and Geophysics, Montanuniversität Leoben, Austria, and StratoChem Services, Cairo. We thank Mike Moldowan (Biomarker Technologies Inc., CA), the Editor-in-Chief John Carranza, and two anonymous reviewers for their comments that greatly improved the quality of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Sh. El Diasty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Diasty, W.S., El Beialy, S.Y., Mostafa, A.R. et al. Chemometric Differentiation of Oil Families and Their Potential Source Rocks in the Gulf of Suez. Nat Resour Res 29, 2063–2102 (2020). https://doi.org/10.1007/s11053-019-09569-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09569-3

Keywords

Navigation