Skip to main content
Log in

Quantitative Relationship Between Argillaceous Caprock Thickness and Maximum Sealed Hydrocarbon Column Height

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The quality of a caprock is closely related to its thickness. Statistical data show that there is an obvious positive correlation between caprock thickness and hydrocarbon column height. This report established that the starting pressure gradient is the key factor in the relationship between caprock thickness and hydrocarbon column height by discussing the concepts and principles of breakthrough pressure, capillary pressure, and starting pressure. Analysis of the physical–chemical properties of the surfaces of mineral particles revealed that the structure of the diffused electric double layer stably develops in the pore throat at the micro- to nanoscale. This is a microcosm of the starting pressure generated in the argillaceous caprock. Based on force analysis, this report establishes that in the process by which fluid breaks through the argillaceous caprock, hydrocarbons slowly displace the formation water in the pore throats and mainly overcome the capillary pressure and adsorption resistance. The quantitative relationship between the caprock thickness and the maximum hydrocarbon column height is determined by considering the starting pressure gradient, and a method is proposed to calculate the maximum hydrocarbon column height of the caprock based on the formation overpressure. This method is successfully applied, and verification via gas testing is performed for offshore oil and gas fields by considering the X gas reservoir. The proposed method has good application prospects in the evaluation of argillaceous caprocks and reservoir risk prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data Availability

Most of the data are contained in the paper. If specific data are needed, the corresponding author can be contacted by email.

References

  • Amann-Hildenbrand, A., Bertier, P., Busch, A., & Krooss, B. M. (2013). Experimental investigation of the sealing capacity of generic clay-rich caprocks. International Journal of Greenhouse Gas Control,19, 620–641.

    Google Scholar 

  • Anderson, E. I. (2009). Explicit solutions to two problems of steady groundwater flow with a threshold gradient. Water Resources Research,45(2), W02504.

    Google Scholar 

  • Aplin, A. C., & Larter, S. R. (2005). Fluid flow, pore pressure, wettability, and leakage in mudstone cap rocks. In P. Boult & J. Kaldi (Eds.), AAPG Hedberg series 2: Evaluating fault and cap rock seals (pp. 1–12). Tulsa: AAPG.

    Google Scholar 

  • Arif, M., Jones, F., Barifcani, A., & Iglauer, S. (2017). Electrochemical investigation of the effect of temperature, salinity and salt type on brine/mineral interfacial properties. International Journal of Greenhouse Gas Control,59, 136–147.

    Google Scholar 

  • Civan, F. (2013). Modeling gas flow through hydraulically-fractured shale-gas reservoirs involving molecular-to-inertial transport regimes and threshold-pressure gradient. In SPE annual technical conference and exhibition (pp. 1–10). New Orleans, LA: Society of Petroleum Engineers.

  • Cui, S. W., Zhu, R. Z., Wei, J. A., Wang, X. S., Yang, H. X., Xu, S. H., et al. (2015). The method for determining nano-contact angle. Acta Physica Sinica,64(11), 116802.

    Google Scholar 

  • Darby, D., Haszeldine, R., & Couples, G. D. (1996). Pressure cells and pressure seals in the UK Central Graben. Marine and Petroleum Geology,13(8), 865–878.

    Google Scholar 

  • Dejam, M., Hassanzadeh, H., & Chen, Z. (2017). Pre-darcy flow in porous media. Water Resources Research,53(10), 8187–8210.

    Google Scholar 

  • Deng, Y. E., Yan, Q. L., & Ma, B. Q. (1998). Relationship between interfacial molecular interaction and permeability and its influence on fluid flow. Petroleum Exploration and Development,25(2), 46–49.

    Google Scholar 

  • Desbois, G., Urai, J. L., Pérez-Willard, F., Radi, Z., Offern, S., Burkart, I., et al. (2013). Argon broad ion beam tomography in a cryogenic scanning electron microscope: A novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid. Journal of Microscopy,249(3), 215–235.

    Google Scholar 

  • Dewhurst, D. N., Piane, C. D., Esteban, L., Sarout, J., Josh, M., Pervukhina, M., et al. (2018). Microstructural, geomechanical, and petrophysical characterization of shale caprocks. In S. Vialle, J. Ajo-Franklin, & J. W. Carey (Eds.), Geological carbon storage (pp. 1–30). Hoboken, NJ: Wiley.

    Google Scholar 

  • Espinoza, D. N., & Santamarina, J. C. (2012). Clay interaction with liquid and supercritical CO2: The relevance of electrical and capillary forces. International Journal of Greenhouse Gas Control,10, 351–362.

    Google Scholar 

  • Espinoza, D. N., & Santamarina, J. C. (2017). CO2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage. International Journal of Greenhouse Gas Control,66, 218–229.

    Google Scholar 

  • Farmani, Z., Azin, R., Fatehi, R., & Escrochi, M. (2018). Analysis of pre-darcy flow for different liquids and gases. Journal of Petroleum Science and Engineering,168, 17–31.

    Google Scholar 

  • Feng, F. K., Wang, T. B., & Zhang, S. Y. (1995). China natural gas geology. Beijing: Geological Publishing House.

    Google Scholar 

  • Flemings, P. B. (2002). Flow focusing in overpressured sandstones: Theory, observations, and applications. American Journal of Science,302(10), 827–855.

    Google Scholar 

  • Fu, X., Jia, R., Wang, H., Wu, T., Meng, L., & Sun, Y. (2015). Quantitative evaluation of fault-caprock sealing capacity: A case from Dabei–Kelasu structural belt in Kuqa depression, Tarim Basin, NW China. Petroleum Exploration and Development,42(3), 329–338.

    Google Scholar 

  • Fu, X., Wu, T., Lyu, Y., Liu, S., Tian, H., & Lu, M. (2018). Research status and development trend of the reservoir caprock sealing properties. Oil and Gas Geology,39(3), 454–471.

    Google Scholar 

  • Fu, G., & Xu, F. M. (2003). Quantitative research on controlling of thickness to seal abilities of cap rock. Natural Gas Geoscience,14(3), 186–190.

    Google Scholar 

  • Gan, Q. M., Cheng, Z., & Cheng, S. M. (2004). Methods to confirm the starting pressure gradient for low permeability reservoir non-darcy flow. Well Testing,13(3), 1–41.

    Google Scholar 

  • Gavin, L. (2004). Pre-darcy flow: A missing piece of the improved oil recovery puzzle? In SPE/DOE symposium on improved oil recovery (pp. 1–14). Tulsa, OK: Society of Petroleum Engineers.

  • Guiltinan, E. J., Espinoza, D. N., Cockrell, L. P., & Cardenas, M. B. (2018). Textural and compositional controls on mudrock breakthrough pressure and permeability. Advances in Water Resources,121, 162–172.

    Google Scholar 

  • Hao, S. S., & Huang, Z. L. (1991). The experimental study and evaluation of roof rock of natural gas. Acta Sedimentologica Sinica,9(4), 20–26.

    Google Scholar 

  • Heath, J. E., Dewers, T. A., McPherson, B. J. O. L., Nemer, M. B., & Kotula, P. G. (2012). Pore-lining phases and capillary breakthrough pressure of mudstone caprocks: Sealing efficiency of geologic CO2 storage sites. International Journal of Greenhouse Gas Control,11, 204–220.

    Google Scholar 

  • Helmholtz, H. L. F. (1879). Studies of electric boundary layers. Wiedemanns Annalen,7, 337–382.

    Google Scholar 

  • Hildenbrand, A., Schlomer, S., & Krooss, B. M. (2002). Gas breakthrough experiments on fine-grained sedimentary rocks. Geofluids,2(1), 3–23.

    Google Scholar 

  • Hu, R., Wan, J., Yang, Z., Chen, Y. F., & Tokunaga, T. (2018). Wettability and flow rate impacts on immiscible displacement: A theoretical model. Geophysical Research Letters,45(7), 3077–3086.

    Google Scholar 

  • Huang, Y. Z. (1998). Percolation mechanism of low permeability reservoir. Beijing: Petroleum Industry Press.

    Google Scholar 

  • Huang, Z. L., & Hao, S. S. (1994). A method of estimating breakthrough pressure and displacement pressure of cap rock. Xinjiang Petroleum Geology,15(2), 163–166.

    Google Scholar 

  • Israelachvili, J. N. (2011). Intermolecular and surface forces. Cambridge, MA: Academic Press.

    Google Scholar 

  • Jackson, M. D., Yoshida, S., Muggeridge, A. H., & Johnson, H. D. (2005). Three-dimensional reservoir characterization and flow simulation of heterolithic tidal sandstones. AAPG Bulletin,89(4), 507–528.

    Google Scholar 

  • Jiang, Y. L. (1998). A discussion on the relation between the cap rock thickness of oil & gas reservoir and its hydrocarbon column height. Natural Gas Industry,18(2), 20–23.

    Google Scholar 

  • Krushin, J. T. (1997). Seal capacity of nonsmectite shale. In R. C. Surdam (Ed.), AAPG memoir 67: Seals, traps, and the petroleum system (pp. 31–48). Tulsa: AAPG.

    Google Scholar 

  • Lu, C., Wang, J., & Sun, Z. G. (2002). An experimental study on starting pressure gradient of fluids flow in low permeability sandstone porous media. Petroleum Exploration and Development,29(2), 86–89.

    Google Scholar 

  • Lü, X., Wang, Y., Yu, H., & Bai, Z. (2017). Major factors affecting the closure of marine carbonate caprock and their quantitative evaluation: A case study of Ordovician rocks on the northern slope of the Tazhong uplift in the Tarim Basin, western China. Marine and Petroleum Geology,83, 231–245.

    Google Scholar 

  • Lupa, J., Flemings, P., & Tennant, S. (2002). Pressure and trap integrity in the deepwater Gulf of Mexico. The Leading Edge,21(2), 184–187.

    Google Scholar 

  • Lv, Y. F., & Fu, G. (2000). Quantitative study on sealing ability of ultra-pressure cap rock. Acta Sedimentologica Sinica,18(3), 465–468.

    Google Scholar 

  • Lv, Y. F., Zhang, S. C., & Wang, Y. M. (2000). Research of quantitative relations between sealing ability and thickness of cap rock. Acta Petrolei Sinica,21(2), 27–30.

    Google Scholar 

  • Ma, C., Dong, C., Lin, C., Yin, H., Xie, J., Luan, G., et al. (2018). Calculation method and application of cap rock’s effective thickness. Journal of China University of Petroleum,42, 21–31.

    Google Scholar 

  • Morrow, N. R. (1990). Interfacial phenomena in petroleum recovery. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Nie, B., He, X. Q., Wang, E. Y., & Zhang, L. (2004). Micro-mechanism of coal adsorbing water. Journal of China University of Mining and Technology,33(4), 379–383.

    Google Scholar 

  • Nygård, R., Gutierrez, M., Bratli, R. K., & Høeg, K. (2006). Brittle–ductile transition, shear failure and leakage in shales and mudrocks. Marine and Petroleum Geology,23(2), 201–212.

    Google Scholar 

  • Pang, X. Q., Fu, G., & Wan, L. G. (1993). Comprehensive quantitative evaluation on caprock’s sealing of oil and gas: Application of basin simulation in caprock evaluation. Beijing: Geological Publishing House.

    Google Scholar 

  • Pascal, H. (1981). Nonsteady flow through porous media in the presence of a threshold gradient. Acta Mechanica,39(3–4), 207–224.

    Google Scholar 

  • Pertsin, A., & Grunze, M. (2004). Water − graphite interaction and behavior of water near the graphite surface. The Journal of Physical Chemistry B,108(4), 1357–1364.

    Google Scholar 

  • Prada, A., & Civan, F. (1999). Modification of Darcy’s law for the threshold pressure gradient. Journal of Petroleum Science and Engineering,22(4), 237–240.

    Google Scholar 

  • Protopapas, A. L. (1998). Two applications of flow in porous media with threshold gradient. Journal of Hydrologic Engineering,3(2), 79–85.

    Google Scholar 

  • Raziperchikolaee, S., Kelley, M., & Gupta, N. (2019). A screening framework study to evaluate CO2 storage performance in single and stacked caprock–reservoir systems of the Northern Appalachian Basin. Greenhouse Gases: Science and Technology,9(3), 582–605.

    Google Scholar 

  • Ren, X., Li, A., Fu, S., & Wang, S. (2018). Experimental study on the oil-water relative permeability relationship for tight sandstone considering the nonlinear seepage characteristics. Journal of Petroleum Science and Engineering,161, 409–416.

    Google Scholar 

  • Riddell, E. A., Apanovitch, E. K., Odom, J. P., & Sears, M. W. (2017). Physical calculations of resistance to water loss improve predictions of species range models. Ecological Monographs,87(1), 21–33.

    Google Scholar 

  • Rossen, W. R. (1990). Minimum pressure gradient for foam flow in porous media: Effect of interactions with stationary lamellae. Journal of Colloid and Interface Science,139(2), 457–468.

    Google Scholar 

  • Russel, W. B., Saville, D. A., & Schowalter, W. R. (1992). Colloidal dispersions. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schmatz, J., Urai, J. L., Berg, S., & Ott, H. (2015). Nanoscale imaging of pore-scale fluid-fluid-solid contacts in sandstone. Geophysical Research Letters,42(7), 2189–2195.

    Google Scholar 

  • Shosa, J. D., & Cathles, L. M. (2001). Experimental investigation of capillary blockage of two phase flow in layered porous media. In Proceedings of 21st GCSSEPM (pp. 612–626). Houston: GCSSEPM.

  • Singh, H., & Dilmore, R. M. (2019). Stochastic prediction of fractured caprock by history matching pressure monitoring data. Journal of Petroleum Science and Engineering,179, 615–630.

    Google Scholar 

  • Swartzendruber, D. (1962). Non-Darcy flow behavior in liquid-saturated porous media. Journal of Geophysical Research,67(13), 5205–5213.

    Google Scholar 

  • Tao, S. Z., & Zou, C. N. (2005). Accumulation and distribution of natural gases in Xihu Sag, East China Sea Basin. Petroleum Exploration and Development,32(4), 103–110.

    Google Scholar 

  • Teige, G. M. G., Hermanrud, C., & Rueslåtten, H. G. (2011). Membrane seal leakage in non-fractured caprocks by the formation of oil-wet flow paths. Journal of Petroleum Geology,34(1), 45–52.

    Google Scholar 

  • Thomas, L. K., Katz, D. L., & Tek, M. R. (1968). Threshold pressure phenomena in porous media. Society of Petroleum Engineers Journal,8(2), 174–184.

    Google Scholar 

  • Tong, X. G., & Niu, J. Y. (1989). Effects of regional cap formation on oil and gas accumulation. Petroleum Exploration and Development,16(4), 1–8.

    Google Scholar 

  • Usui, S. (2018). DLVO theory of colloid stability. Electrical phenomena at interfaces. Abingdon: Routledge.

    Google Scholar 

  • Watts, N. L. (1987). Theoretical aspects of cap-rock and fault seals for single- and two-phase hydrocarbon columns. Marine and Petroleum Geology,4(4), 274–307.

    Google Scholar 

  • Wigger, C., Gimmi, T., Muller, A., & Van Loon, L. R. (2018a). The influence of small pores on the anion transport properties of natural argillaceous rocks: A pore size distribution investigation of Opalinus Clay and Helvetic Marl. Applied Clay Science,156, 134–143.

    Google Scholar 

  • Wigger, C., Plötze, M., & Van Loon, L. R. (2018b). Pore geometry as a limiting factor for anion diffusion in argillaceous rocks. Clays and Clay Minerals,66(4), 329–338.

    Google Scholar 

  • Wu, J., Fan, T., Gomez-Rivas, E., Gao, Z., Yao, S., Li, W., et al. (2019). Impact of pore structure and fractal characteristics on the sealing capacity of Ordovician carbonate cap rock in the Tarim Basin, China. Marine and Petroleum Geology,102, 557–579.

    Google Scholar 

  • Yan, Q. L., He, Q. X., & Wei, L. G. (1990). A laboratory study on percolation characteristics of single phase flow in low permeability reservoirs. Journal of Xi’an Petroleum Institute,5(2), 1–6.

    Google Scholar 

  • Yang, R. F., Jiang, R. Z., & Sun, J. Z. (2011). Study on non-linear flow mechanism in low permeability porous medium. PGRE,18(2), 90–93.

    Google Scholar 

  • Yu, L. J., Fan, M., & Liu, W. X. (2011). Seal mechanism of cap rocks. Petroleum Geology and Experiment,33(1), 91–95.

    Google Scholar 

  • Yuan, J. H., Liu, G. D., & Zhang, Y. (2008). Thickness sealing effect of relative caprock and its application. Journal of Xi’an Shiyou University (Natural Science Edition),23(1), 34–36.

    Google Scholar 

  • Zaki, T. A., & Durbin, P. A. (2006). Continuous mode transition and the effects of pressure gradient. Journal of Fluid Mechanics,563, 357–388.

    Google Scholar 

  • Zhang, L. (2010). Reevaluation of cap rock physical sealing mechanic. Natural Gas Geoscience,21(1), 112–116.

    Google Scholar 

  • Zhang, L. H., Bao, Y. S., Liu, Q., Zhang, S. C., Zhu, R. F., & Zhang, L. (2010). The relationship between the physical sealing ability of caprocks and the physical properties of hydrocarbon fluids is discussed. China Science: Geoscience,40(1), 28–33.

    Google Scholar 

  • Zhang, Y., Lü, X., Yang, H., Han, J., Lan, X., Zhao, Y., et al. (2014). Control of hydrocarbon accumulation by Lower Paleozoic cap rocks in the Tazhong Low Rise, Central Uplift, Tarim Basin, West China. Petroleum Science,11(1), 67–80.

    Google Scholar 

  • Zhang, C., & Yu, Q. (2019). Breakthrough pressure and permeability in partially water-saturated shales using methane–carbon dioxide gas mixtures: An experimental study of Carboniferous shales from the eastern Qaidam Basin, China. AAPG Bulletin,103(2), 273–301.

    Google Scholar 

  • Zhang, G. H., & Zhang, J. P. (2015). A discussion on the tectonic inversion and its genetic mechanism in the East China Sea Shelf Basin. Earth Science Frontiers,22(1), 260–270.

    Google Scholar 

  • Zheng, Z., & Li, N. (1995). Molecular force with stability and coagulation of colloid. Beijing: Higher Education Press.

    Google Scholar 

  • Zhou, X., Lü, X., Quan, H., Qian, W., Mu, X., Chen, K., et al. (2019). Influence factors and an evaluation method about breakthrough pressure of carbonate rocks: An experimental study on the Ordovician of carbonate rock from the Kalpin area, Tarim Basin, China. Marine and Petroleum Geology,104, 313–330.

    Google Scholar 

  • Zhou, X. F., Zhang, Y. S., Yan, D. T., Tang, J., Wu, Z., Ma, Z., et al. (2018). Quantitative evaluation of sealing capacity of tertiary mudstone caprock in Lenghu area, Qaidam Basin. Earth Science,43(S2), 226–233.

    Google Scholar 

  • Zieglar, D. L. (1992). Hydrocarbon columns, buoyancy pressures, and seal efficiency: Comparisons of oil and gas accumulations in California and the Rocky Mountain area (1). AAPG Bulletin,76(4), 501–508.

    Google Scholar 

Download references

Acknowledgments

We thank Professor Xiancai Lu of Nanjing University and Professor Yudou Wang of the China University of Petroleum (East China) for the discussion on the mechanism of absorption resistance.

Funding

Funding was provided by Natural Science Foundation of China (Grant Nos. 41802172 and 41830431), Technology Major Project, P. R. China (Grant No. 2017ZX05009-001), and Fundamental Research Funds for the Central Universities (Grant No. 18CX02178A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunfei Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Lin, C., Dong, C. et al. Quantitative Relationship Between Argillaceous Caprock Thickness and Maximum Sealed Hydrocarbon Column Height. Nat Resour Res 29, 2033–2049 (2020). https://doi.org/10.1007/s11053-019-09554-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09554-w

Keywords

Navigation