Skip to main content

Advertisement

Log in

Coal Cleat/Fracture Segmentation Using Convolutional Neural Networks

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Cleats/fractures play a vital role in gas extraction from coal bed methane reservoirs. As such, fractures are identified in microcomputed tomography images by segmentation in detailed fracture characterization studies. Conventional segmentation methods include thresholding-based, region growing, and hybrid methods. In digital images, these methods are unable to differentiate fractures from other coal constituents with a similar intensity on the gray scale. However, a supervised segmentation is not a wise approach, since it requires a considerable amount of time. Recently, machine learning—more specifically, the convolutional neural networks (CNN)—has demonstrated excellent performance in machine vision applications. This study uses CNN-based methods to segment cleats/fractures of two types of coal samples: homogenous (with typical cleat system) and heterogeneous (with complex background and irregular fracture system). Two CNNs (2D and 3D) with similar architectures are applied to classify the central pixel (or voxel) of the input image as either fracture or nonfracture classes. In the case of the homogenous coal, the existing fractures in one 2D image are manually segmented and used for the training, validation, and test dataset. Results indicate that the 3D CNN is more robust and accurate than the 2D CNN, as the former extracts the features in 3D space. For the complex and heterogeneous sample, five 2D images are segmented for a more representative training dataset. The extracted fracture system using the 3D CNN displays an accuracy of 96.7%. A comparison with the conventional methods in both cases showed that the CNN-based approach not only detects the fracture system more efficiently but also generates fractures with a correct aperture size. These results reveal that CNN-based methods successfully discern fractures from other constituents of coal with similar grayscale intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abutaleb, A. S. (1989). Automatic thresholding of gray-level pictures using two-dimensional entropy. Computer Vision, Graphics, and Image Processing,47(1), 22–32.

    Article  Google Scholar 

  • Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,39(12), 2481–2495.

    Article  Google Scholar 

  • Beucher, S., & Meyer, F. (1992). The morphological approach to segmentation: The watershed transformation. Optical Engineering-New York-Marcel Dekker Incorporated-,34, 433–481.

    Google Scholar 

  • Brink, A. D. (1992). Thresholding of digital images using two-dimensional entropies. Pattern Recognition,25(8), 803–808.

    Article  Google Scholar 

  • Cheng, G., & Guo, W. (2017). Rock images classification by using deep convolution neural network. Journal of Physics: Conference Series,887(1), 012089.

    Google Scholar 

  • Deng, H., Fitts, J. P., & Peters, C. A. (2016). Quantifying fracture geometry with X-ray tomography: Technique of iterative local thresholding (TILT) for 3D image segmentation. Computational Geosciences,20(1), 231–244.

    Article  Google Scholar 

  • Ferreira, A., & Giraldi, G. (2017). Convolutional neural network approaches to granite tiles classification. Expert Systems with Applications,84, 1–11.

    Article  Google Scholar 

  • Freyer, M., Ale, A., Schulz, R. B., Zientkowska, M., Ntziachristos, V., & Englmeier, K.-H. (2010). Fast automatic segmentation of anatomical structures in X-ray computed tomography images to improve fluorescence molecular tomography reconstruction. Journal of Biomedical Optics,15(3), 036006.

    Article  Google Scholar 

  • Glasbey, C. A. (1993). An analysis of histogram-based thresholding algorithms. CVGIP: Graphical Models and Image Processing,55(6), 532–537.

    Google Scholar 

  • Hamawand, I., Yusaf, T., & Hamawand, S. G. (2013). Coal seam gas and associated water: A review paper. Renewable and Sustainable Energy Reviews,22, 550–560.

    Article  Google Scholar 

  • Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., et al. (2017). Brain tumor segmentation with deep neural networks. Medical Image Analysis,35, 18–31.

    Article  Google Scholar 

  • Haykin, S. S. (1999). Neural networks: A comprehensive foundation. London: Prentice Hall.

    Google Scholar 

  • Hong, H., Zheng, L., Zhu, J., Pan, S., & Zhou, K. (2017). Automatic recognition of coal and gangue based on convolution neural network. https://arxiv.org/abs/1712.00720. Accessed 15 Oct 2018.

  • Iassonov, P., Gebrenegus, T., & Tuller, M. (2009). Segmentation of X-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures. Water Resources Research. https://doi.org/10.1029/2009WR008087.

    Article  Google Scholar 

  • Kamrava, S., Tahmasebi, P., & Sahimi, M. (2019). Enhancing images of shale formations by a hybrid stochastic and deep learning algorithm. Neural Networks, 118, 310–320.

    Article  Google Scholar 

  • Karimpouli, S., & Tahmasebi, P. (2019a). Segmentation of digital rock images using deep convolutional autoencoder networks. Computers & Geosciences,126, 142–150.

    Article  Google Scholar 

  • Karimpouli, S., & Tahmasebi, P. (2019b). Image-based velocity estimation of rock using convolutional neural networks. Neural Networks,111, 89–97.

    Article  Google Scholar 

  • Karimpouli, S., Tahmasebi, P., Ramandi, H. L. H. L., Mostaghimi, P., & Saadatfar, M. (2017). Stochastic modeling of coal fracture network by direct use of micro-computed tomography images. International Journal of Coal Geology,179, 153–163. https://doi.org/10.1016/j.coal.2017.06.002.

    Article  Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision,1(4), 321–331.

    Article  Google Scholar 

  • Ketcham, R. A. (2005). Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere,1(1), 32. https://doi.org/10.1130/GES00001.1.

    Article  Google Scholar 

  • Ketcham, R. A., Slottke, D. T., & Sharp, J. M. (2010). Three-dimensional measurement of fractures in heterogeneous materials using high-resolution X-ray computed tomography. Geosphere,6(5), 499–514.

    Article  Google Scholar 

  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. http://arxiv.org/abs/1412.6980. Accessed 29 July 2018.

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.299.205. Accessed 7 Oct 2018.

  • Laloy, E., Hérault, R., Lee, J., Jacques, D., & Linde, N. (2017). Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network. Advances in Water Resources,110, 387–405.

    Article  Google Scholar 

  • Laubach, S. E., Marrett, R. A., Olson, I. E., & Scott, A. R. (1998). Characteristics and origins of coal cleat: A review. International Journal of Coal Geology,35(1–4), 175–207.

    Article  Google Scholar 

  • Le, B. T., Xiao, D., Mao, Y., & He, D. (2018). Coal analysis based on visible-infrared spectroscopy and a deep neural network. Infrared Physics & Technology,93, 34–40.

    Article  Google Scholar 

  • Li, H., Lin, Z., Shen, X., Brandt, J., & Hua, G. (2015). A convolutional neural network cascade for face detection. In 2015 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 5325–5334). IEEE. https://doi.org/10.1109/cvpr.2015.7299170

  • Li, M., Zhang, T., Chen, Y., & Smola, A. J. (2014). Efficient mini-batch training for stochastic optimization. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data miningKDD’14 (pp. 661–670). New York, NY: ACM Press. https://doi.org/10.1145/2623330.2623612.

  • Lu, P., Morris, M., Brazell, S., Comiskey, C., & Xiao, Y. (2018). Using generative adversarial networks to improve deep-learning fault interpretation networks. The Leading Edge,37(8), 578–583.

    Article  Google Scholar 

  • Mosser, L., Dubrule, O., & Blunt, M. J. (2017). Reconstruction of three-dimensional porous media using generative adversarial neural networks. Physical Review E,96(4), 043309. https://doi.org/10.1103/PhysRevE.96.043309.

    Article  Google Scholar 

  • Mostaghimi, P., Armstrong, R. T., Gerami, A., Hu, Y., Jing, Y., Kamali, F., et al. (2017). Cleat-scale characterisation of coal: An overview. Journal of Natural Gas Science and Engineering,39, 143–160.

    Article  Google Scholar 

  • Otsu, N. (1975). A threshold selection method from gray-level histograms. Automatica,11(285–296), 23–27.

    Google Scholar 

  • Ramandi, H. L., Armstrong, R. T., & Mostaghimi, P. (2016a). Micro-CT image calibration to improve fracture aperture measurement. Case Studies in Nondestructive Testing and Evaluation, 6, 4–13.

    Article  Google Scholar 

  • Ramandi, H. L., Mostaghimi, P., & Armstrong, R. T. (2016b). Digital rock analysis for accurate prediction of fractured media permeability. Journal of Hydrology,554, 817–826.

    Article  Google Scholar 

  • Ramandi, H. L., Mostaghimi, P., Armstrong, R. T., Saadatfar, M., & Pinczewski, W. V. (2016c). Porosity and permeability characterization of coal: A micro-computed tomography study. International Journal of Coal Geology,154–155, 57–68.

    Article  Google Scholar 

  • Rosin, P. L. (2001). Unimodal thresholding. Pattern Recognition,34(11), 2083–2096.

    Article  Google Scholar 

  • Serra, J. (1986). Introduction to mathematical morphology. Computer Vision, Graphics, and Image Processing,35(3), 283–305.

    Article  Google Scholar 

  • Sheppard, A. P., Sok, R. M., & Averdunk, H. (2004). Techniques for image enhancement and segmentation of tomographic images of porous materials. Physica A: Statistical Mechanics and its Applications,339(1–2), 145–151.

    Article  Google Scholar 

  • Srisutthiyakorn, N. (2016). Deep-learning methods for predicting permeability from 2D/3D binary-segmented images. In SEG technical program expanded abstracts 2016 (pp. 3042–3046). Society of Exploration Geophysicists. https://doi.org/10.1190/segam2016-13972613.1.

  • Tahmasebi, P. (2017). HYPPS: A hybrid geostatistical modeling algorithm for subsurface modeling. Water Resources Research, 53(7), 5980–5997.

    Article  Google Scholar 

  • Tahmasebi, P. (2018). Accurate modeling and evaluation of microstructures in complex materials. Physical Review E, 97(2)

  • Tahmasebi, P., Javadpour, F., & Sahimi, M. (2017). Data mining and machine learning for identifying sweet spots in shale reservoirs. Expert Systems with Applications,88, 435–447.

    Article  Google Scholar 

  • Waldeland, A. U., Jensen, A. C., Gelius, L.-J., & Solberg, A. H. S. (2018). Convolutional neural networks for automated seismic interpretation. The Leading Edge,37(7), 529–537.

    Article  Google Scholar 

  • Wang, Z., Di, H., Shafiq, M. A., Alaudah, Y., & AlRegib, G. (2018). Successful leveraging of image processing and machine learning in seismic structural interpretation: A review. The Leading Edge,37(6), 451–461.

    Article  Google Scholar 

  • Xiong, W., Ji, X., Ma, Y., Wang, Y., AlBinHassan, N. M., Ali, M. N., et al. (2018). Seismic fault detection with convolutional neural network. Geophysics,83(5), O97–O103.

    Article  Google Scholar 

  • Yao, Y., Liu, D., Che, Y., Tang, D., Tang, S., & Huang, W. (2009). Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography. International Journal of Coal Geology,80(2), 113–123.

    Article  Google Scholar 

  • Zhang, Guanglei, Ranjith, P. G., Perera, M. S. A., Haque, A., Choi, X., & Sampath, K. S. M. (2018a). Characterization of coal porosity and permeability evolution by demineralisation using image processing techniques: A micro-computed tomography study. Journal of Natural Gas Science and Engineering,56, 384–396.

    Article  Google Scholar 

  • Zhang, P. Y., Sun, J. M., Jiang, Y. J., & Gao, J. S. (2017). Deep learning method for lithology identification from borehole images. https://doi.org/10.3997/2214-4609.201700945.

  • Zhang, Guoyin, Wang, Z., & Chen, Y. (2018b). Deep learning for seismic lithology prediction. Geophysical Journal International,215(2), 1368–1387.

    Google Scholar 

Download references

Acknowledgments

The authors thank H. L. Ramandi for sharing the grayscale image and the multiphase segmented model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Karimpouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimpouli, S., Tahmasebi, P. & Saenger, E.H. Coal Cleat/Fracture Segmentation Using Convolutional Neural Networks. Nat Resour Res 29, 1675–1685 (2020). https://doi.org/10.1007/s11053-019-09536-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09536-y

Keywords

Navigation