Integration of Electrofacies and Hydraulic Flow Units to Delineate Reservoir Quality in Uncored Reservoirs: A Case Study, Nubia Sandstone Reservoir, Gulf of Suez, Egypt

Abstract

Recognition of reservoir quality is an important objective in reservoir characterization process. By definition, the quality of a reservoir is described by its hydrocarbon storage capacity and deliverability. The storage capacity is a function of porosity, whereas deliverability is a function of permeability. Thus, both porosity and permeability are the main reservoir quality controlling factors. Five wells were selected to study the reservoir quality of the Nubia sandstone in the Gulf of Suez, Egypt. The Nubia interval, deposited in continental to shallow marine conditions, consists mainly of sandstone intercalated by thin layers of shale. Three wells were partially cored and the other two wells are completely uncored. Based on several complementary techniques, it is concluded that the Nubia sandstone is of moderate to extremely heterogeneous quality. The porosity–permeability cross-plot showed fair-to-medium relationship, indicating the significant role of diagenetic agents. The Nubia reservoir quality has been enhanced principally by fracturing, dissolution and leaching. However, the reservoir quality decreased by cementation, compaction and filling of pore spaces by kaolinite. Based on principal component and cluster analyses, six electrofacies are recognized within the Nubia interval. Three electrofacies are dominant, whereas the other three are subsidiary. Flow zone indicator (FZI) was determined based on mean hydraulic radius and normalized porosity. Correlation between electrofacies and FZI permits discriminating the subject formation into reservoir quality ranks. The relative complexity of this reference formation notwithstanding, because of the robustness of the resulting electrofacies–FZI correlations, it was relatively straightforward to recognize and reasonably predict the reservoir quality of the uncored intervals.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

References

  1. Abbaszadeh, M., Fujii, H., & Fujimoto, F. (1996). Permeability prediction by hydraulic flow units—theory and applications. SPE Formation Evaluation, 11(4), 263–271.

    Article  Google Scholar 

  2. Abdel-Wahab, A. A. (1992). Provenance of Gebel El Zeit sandstones, Gulf of Suez. Egypt. Sedimentary Geology, 75, 241–251.

    Article  Google Scholar 

  3. Abdel-Wahab, A. A., Allam, A., Kholief, M. M., & Salem, A. M. (1992). Sedimentological and paleoenvironmental studies on Gebel El-Zeit, Gulf of Suez. Egypt. Journal of African Earth Sciences, 14, 121–129.

    Article  Google Scholar 

  4. Abed, A. A. (2014). Hydraulic flow units and permeability prediction in a carbonate reservoir, Southern Iraq from well log data using non-parametric correlation. International Journal of Enhanced Research in Science Technology & Engineering, 3(1), 480–486.

    Google Scholar 

  5. Al-Dhafeeri, A. M., & Nasr-El-Din, H. A. (2007). Characteristics of high-permeability zones using core analysis, and production logging data. Journal of Petroleum Science and Engineering, 55, 18–36.

    Article  Google Scholar 

  6. Allam, A. (1988). A lithostratigraphical and structural study on Gebel El-Zeit area. Journal of African Earth Sciences, 7, 933–944.

    Article  Google Scholar 

  7. Alsharhan, A., & Salah, M. (1997). Lithostratigraphy, sedimentology and hydrocarbon habitat of the Pre-Cenomanian Nubian sandstone in the Gulf of Suez oil Province. Egypt. GeoArabia, 2(4), 385–400.

    Google Scholar 

  8. Amaefule, J., Altunbay, M., Tiab, D., Kersey, D., & Keelan, D. (1993). Enhanced reservoir description using core and log data to identify hydraulic flow units and predict permeability in uncored intervals/wells. Society of Petroleum Engineers, 26436, 205–220.

    Google Scholar 

  9. Byrnes, A. P., (1994). Prediction of Permeability and Capillary Pressure. In Wilson, M. D. (Ed), Reservoir quality assessment and prediction in clastic rocks. SEPM Society for Sedimentary Geology 30: 349-355.

  10. Corbett, P. W. M., & Potter, D. K. (2004). Petrotyping: A base map and atlas for navigating through permeability and porosity data for reservoir comparison and permeability prediction. In International Symposium of the Society of Core Analysts.

  11. Doveton, J. H. (1994). Geologic log analysis using computer methods. Computer applications in geology (2nd ed.). Tulsa: AAPG.

    Google Scholar 

  12. Doveton, J. H. (2014). Principles of mathematical petrophysics. Oxford: Oxford University Press.

    Google Scholar 

  13. Dykstra, H., & Parsons, R. L. (1950). The prediction of oil recovery by waterflooding. Secondary Recovery of Oil in the United States (2nd ed., pp. 160–174). Washington, DC: API.

    Google Scholar 

  14. El Sharawy, M. S. (2001). Geology and tectonic of Younis and Nessim oilfields, Gulf of Suez. Mansoura: Mansoura University.

    Google Scholar 

  15. El Sharawy, M. S. (2006). Seismic and well log data as an aid for evaluating oil and gas reservoirs in the southern part of the Gulf of Suez, Egypt. In Ph.D. dissertation. Mansoura University, Egypt.

  16. El Sharawy, M. S., & Nabawy, B. S. (2016a). Geological and petrophysical characterization of the lower Senonian Matulla formation in Southern and Central Gulf of Suez, Egypt. Arabian Journal for Science and Engineering, 41(1), 281–300.

    Article  Google Scholar 

  17. El Sharawy, M. S., & Nabawy, B. S. (2016b). Determination of electrofacies using wireline logs based on multivariate statistical analysis for the Kareem Formation, Gulf of Suez, Egypt. Environmental Earth Sciences, 75(21), 1394.

    Article  Google Scholar 

  18. El Sharawy, M. S., & Nabawy, B. S. (2018). Determining the porosity exponent m and lithology factor a for sandstones and their control by overburden pressure: A case study from the Gulf of Suez. Egypt. AAPG Bulletin, 102(9), 1893–1910.

    Article  Google Scholar 

  19. Elphick, R., & Moore, R. (1999). Permeability calculations from clustered electrofacies, a case study in Lake Maracaibo, Venezuela. In: 40th SPWLA annual symposium, Oslo, Norway.

  20. El Heiny I., Enani, N., & Abdou, I. (1998). Structural and stratigraphic interpretation of a new Nubian sandstone oil reservoir, Gulf of Suez, Egypt. In 14th EGPC Exploration and Production Conference (Vol. 1, pp. 466–491).

  21. Gameel, M., & Darwish, M. (1994). Reservoir behavior of the Pre- Turonian sandstones in south Gulf of Suez province (Sidki field—case history). In 12th EGPC Exploration and Production Conference (Vol. 2, pp. 449–471).

  22. Guo, G., Diaz, M. A., Paz, F. J., Smalley, J., & Waninger, E. A. (2007). Rock typing as an effective tool for permeability and water-saturation modeling: A case study in a clastic reservoir in the Oriente basin. Society of Petroleum Engineers Reservoir Evaluation & Engineering, 10(6), 730–739.

    Article  Google Scholar 

  23. Hermina, M., Klitzsch, E., & List, F. R. (1989). Stratigraphic Lexicon and Explanatory Notes to the Geological Map of Egypt 1: 500 000. Cairo: Conoco Inc.

    Google Scholar 

  24. Issawi, B., El-Hinnawi, N., Khawaga, L., Labib, S., & Anani, N. (1981). Contributions to the geology of Wadi Feiran area, Sinai (p. 48). Petrobel internal Report: Egypt.

    Google Scholar 

  25. Kassab, M. A. M., Abu Hashish, M., Nabawy, B. S., & El-Nagar, O. (2017). Effect of the kaolinite content on porosity, permeability and capillary pressure derived parameters, Nubia sandstone, Wadi Kareem, Eastern Desert. Egypt. Journal of African Earth Sciences, 125, 103–117.

    Article  Google Scholar 

  26. Klitzsch, E., & Squyres, C. H. (1990). Paleozoic and Mesozoic geologic history of northeastern Africa based upon new interpretation of Nubia strata. AAPG Bulletin, 74, 1203–1211.

    Google Scholar 

  27. Kolodzie, Jr. S. (1980). Analysis of pore throat size and use of the Waxman-Smits equation to determine OOIP in Spindle field, Colorado: Society of Petroleum Engineers. In 55th Annual Fall Technical Conference, Society of Petroleum Engineers Paper No. 9382, 10.

  28. Kora, M. (1984). The Palaeozoic outcrops of Um-Bogma area, Sinai, Egypt. In Ph.D. Thesis, Mansoura University, Mansoura.

  29. Lee, S.H., & Datta-Gupta, A. (1999). Electrofacies characterization and permeability predictions in carbonate reservoirs: role of multivariate analysis and non-parametric regression. Society of Petroleum Engineers -56658-MS, 13.

  30. Morris, R.L., & Biggs, W.P. (1967). Using log-derived values of water saturation and porosity: Society of Professional Well Log Analysts Annual Logging Symposium 26.

  31. Moss, B. (1997). The partitioning of petrophysical data: a review. In H. Lovell (Ed.), Developments in petrophysics (Vol. 122, pp. 181–252). London: Geological Society Special Publication.

    Google Scholar 

  32. Nabawy, B. S. (2014). Estimating porosity and permeability using digital image analysis (DIA) technique for highly porous sandstones. Arabian Journal of Geosciences, 7(3), 889–898.

    Article  Google Scholar 

  33. Nabawy, B. S. (2015). Impacts of the pore- and petro-fabrics on porosity exponent and lithology factor of Archie’s equation for carbonate rocks. Journal of African Earth Sciences, 108, 101–114.

    Article  Google Scholar 

  34. Nabawy, B. S., & Al-Azazi, N. A. S. (2015). Reservoir zonation and discrimination using the routine core analyses data: the upper Jurassic Sab’atayn sandstones as a case study, Sab’atayn basin, Yemen. Arabian Journal of Geosciences, 8(8), 5511–5530.

    Article  Google Scholar 

  35. Nabawy, B. S., & Barakat, M. Kh. (2017). Formation Evaluation using conventional and special core analyses: Belayim formation as a case study, Gulf of Suez, Egypt. Arabian Journal of Geosciences, 10(25), 1–23.

    Google Scholar 

  36. Nabawy, B. S., Basal, A. M. K., Sarhan, M. A., & Safa, M. G. (2018). Reservoir zonation, rock typing and compartmentalization of the Tortonian-Serravallian sequence, Temsah Gas Field, offshore Nile Delta. Egypt. Marine and Petroleum Geology, 92, 609–631.

    Article  Google Scholar 

  37. Nabawy, B. S., & David, Ch. (2016). X-Ray CT scanning imaging for the Nubia sandstones: A macro scale tool for characterizing fluid transport. Geosciences Journal, 20(5), 691–704.

    Article  Google Scholar 

  38. Nabawy, B. S., & ElHariri, T. Y. M. (2008). Electric fabric of cretaceous clastic rocks in Abu Gharadig basin, Western Desert, Egypt. Journal of African Earth Sciences, 52(1), 55–61.

    Article  Google Scholar 

  39. Nabawy, B. S., & Géraud, Y. (2016). Impacts of pore- and petro-fabrics, mineral composition and diagenetic history on the bulk thermal conductivity of sandstones. Journal of African Earth Sciences, 115, 48–62.

    Article  Google Scholar 

  40. Nabawy, B. S., Rochette, P., & Géraud, Y. (2009). Petrophysical and magnetic pore network anisotropy of some cretaceous sandstone from Tushka Basin. Egypt, Geophysical Journal International, 177(1), 43–61.

    Article  Google Scholar 

  41. Nabawy, B. S., Rochette, P., & Géraud, Y. (2010). Electric pore fabric of the Nubia sandstones in south Egypt: characterization and modelling. Geophysical Journal International, 183, 681–694.

    Article  Google Scholar 

  42. Nabawy, B. S., Sediek, K. N., & Nafee, S. A. (2015). Pore fabric assignment using electrical conductivity of some Albian-Cenomanian sequences in north Eastern Desert. Egypt. Arabian Journal of Geosciences, 8(8), 5601–5615.

    Article  Google Scholar 

  43. Nabway, B. S., & Kassab, M. A. (2014). Porosity-reducing and porosity-enhancing diagenetic factors for some carbonate microfacies: A guide for petrophysical facies discrimination. Arabian Journal of Geosciences, 7(11), 4523–4539.

    Article  Google Scholar 

  44. Noweir, A.M., Abdel-Hameed, A.M., & Salem, A. (2000). On the Petrology of Paleozoic-Mesozoic Nubian (Nuba) type sandstones in Egypt. In: Soliman, S.M. (Ed.), Sedimentary Geology of Egypt, Applications and Economics.

  45. Patton, T., Moustafa, A., Nelson, R., & Abdine, A. (1994). Tectonic evolution and structural setting of the Suez rift. In: Landon SM (ed) Interior rift basin. AAPG Memoir 59, 9–55.

  46. Perez, H. H., Datta-Gupta, A., & Mishra, S. (2005). The role of electrofacies, lithofacies, and hydraulic flow units in permeability predictions from well logs: a comparative analysis using classification trees. Society of Petroleum Engineers-84301-PA 13.

  47. Pittman, E. D. (1992). Relationship of porosity and permeability to various parameters derived from mercury injection capillary pressure curves for sandstone. AAPG Bulletin, 76, 191–198.

    Google Scholar 

  48. Pittman, E. D. (2001). Estimating pore throat size in sandstones from routine core-analysis data: Search and Discovery Article 40009. http://www.searchanddiscovery.net/documents/pittman/index.htm.

  49. Said, R. (1971). Explanatory note to accompany the geological map of Egypt. Geological Survey of Egypt, 56, 123.

    Google Scholar 

  50. Schowalter, T. T. (1979). Mechanics of secondary hydrocarbon migration and entrapment. AAPG Bulletin, 63(5), 723–760.

    Google Scholar 

  51. Serra, O. (1988). Fundamentals of well-log interpretation: the acquisition of logging data.

  52. Serra, O., & Abbott, H. T. (1980). The contribution of logging data to sedimentology and stratigraphy, Society of Petroleum Engineers 9270-PA 19, Elsevier Science Publishing Co. Inc.

  53. Shenawi, S. H., White, J. P., Elrafie, E. A., & Kilany, K. A. (2007). Permeability and water saturation distribution by lithologic facies and hydraulic units: A Reservoir Simulation Case Study: Society of Petroleum Engineers Paper no.105273. In 15th Society of Petroleum Engineers Middle East Oil & Gas Show and Conference, Kingdom of Bahrain.

  54. Spearing, M., Allen, T., & McAulay, G. (2001). Review of the Winland R35 method for net pay definition and its application in low permeability sands. In International Symposium Proceedings, Society of Core Analysts Paper No. 63, 5.

  55. Stinco, L. P. (2006). Core and log data integration; the key for determining electrofacies. In SPWLA 47th Annual Logging Symposium 7.

  56. Stinco, L., Elphick, R., & Moore, W. (2001). Electrofacies and production prediction index determination in El Tordillo Field, San Jorge Basin, Argentina. In: 42nd society of professional well log analyst annual symposium, Houston.

  57. Teh, W. J., Willhite, G. P., & Doveton, J. H. (2012). Improved reservoir characterization using petrophysical classifiers within electrofacies. Society of Petroleum Engineers 154341-PP 19.

  58. Tiab, D., & Donaldson, E. C. (1996). Petrophysics. Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties. Houston: Gulf Publishing.

    Google Scholar 

  59. Winland, H. D. (1972). Oil accumulation in response to pore size changes, Weyburn field, Saskatchewan. Amaco Production Research Report No. F72-G-25.

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their significant comments that helped us improve and reconstruct the manuscript. Special thanks are also due to the Editor Prof. Dr. John Carranza, whose patience and insightful suggestions have led to a concise revised version. The authors are grateful to the Egyptian General Petroleum Corporation and the Gulf of Suez Petroleum Company for releasing the data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bassem S. Nabawy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Sharawy, M.S., Nabawy, B.S. Integration of Electrofacies and Hydraulic Flow Units to Delineate Reservoir Quality in Uncored Reservoirs: A Case Study, Nubia Sandstone Reservoir, Gulf of Suez, Egypt. Nat Resour Res 28, 1587–1608 (2019). https://doi.org/10.1007/s11053-018-9447-7

Download citation

Keywords

  • Nubia sandstone
  • Electrofacies
  • Reservoir quality
  • Porosity
  • Permeability