Abstract
To increase its domestic gas production and achieve cleaner end-use utilization of its coal resources, China is actively promoting its coal-to-gas (CTG) industry. However, one of the major concerns for CTG development is the consequent significant water usage. To better understand this aspect, this paper presents a quantitative assessment of the water footprint (WF) for China’s CTG industry. The results show that the WF of CTG in China is typically in the region of 0.055 m3 water per cubic meter of produced gas. In addition, the analysis of the components of this WF indicates that most of the water resources are used both in the process of CTG production itself, and also in the dilute discharge of pollutants. In terms of the planned production capacity of China’s CTG projects, this paper finds that the water use in some regions of Xinjiang, Inner Mongolia, Shanxi and Liaoning may account 30–40% of regional water resources, which means the large-scale development of CTG projects may present significant risks to regional water resources. Therefore, this paper suggests that the status of regional water availability should be one of the key factors considered by policy makers in order to achieve sustainable development of the country’s CTG industry.
This is a preview of subscription content, access via your institution.






References
Allan, C., Xia, J., & Pahl-Wostl, C. (2013). Climate change and water security: Challenges for adaptive water management. Current Opinion in Environmental Sustainability, 5(6), 625–632.
Berger, M., Warsen, J., Krinke, S., Bach, V., & Finkbeiner, M. (2012). Water footprint of European cars: Potential impacts of water consumption along automobile life cycles. Environmental Science and Technology, 46(7), 4091–4099.
Cai, D. F., Wang, L., Xu, J., & Wang, Z. Z. (2011). Present status and analysis on coal gasification technology for SNG. Clean Coal Technology, 17(5), 44–47.
Chandel, M., & Williams, E. (2009). Synthetic natural gas (SNG): Technology, environmental implications, and economics, January 2009. https://nicholasinstitute.duke.edu/sites/default/files/publications/natgas-paper.pdf. Accessed 4 Apr 2018.
Chapagain, A. K., Hoekstra, A. Y., Savenije, H. H. G., & Gautam, R. (2006). The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecological Economics, 60(1), 186–203.
Chen, P. C., Chiu, H. M., Chyou, Y. P., & Svoboda, K. (2016). Warm syngas clean-up processes applied in synthetic natural gas (SNG) production with coal and biomass. Chemical Engineering Transactions, 52, 469–474.
China Electricity Council (CEC). (2016). China electric power industry annual development report. http://www.cec.org.cn/guihuayutongji/gongzuodongtai/2016-08-24/157409.html. Accessed 3 Mar 2018.
Chiu, Y. W., & Wu, M. (2012). Assessing county-level water footprints of different cellulosic-biofuel feedstock pathways. Environmental Science and Technology, 46(16), 9155–9162.
Cornot-Gandolphe, S. (2014). China’s coal market: Can Beijing Tame ‘King Coal’?. Oxford: The Oxford Institute for Energy Studies.
Ding, Y., Han, W., Chai, Q., Yang, S., & Shen, W. (2013). Coal-based synthetic natural gas (SNG): A solution to China’s energy security and CO2 reduction? Energy Policy, 55, 445–453.
Ding, N., Lu, X. H., Yang, J. X., & Bin, L. (2016). Water footprint of coal production. Acta Scientiae Circumstantiae, 36, 4228–4233.
Feng, K., Hubacek, K., Siu, Y. L., & Li, X. (2014). The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis. Renewable and Sustainable Energy Reviews, 39, 342–355.
Friedrichs, J. (2011). Peak energy and climate change: The double bind of post-normal science. Futures, 43(4), 469–477.
Fu, G. Z., & Chen, C. (2010). NG demand and supply in China and economic and technical analysis of coal gasification technology. Sino-Global Energy, 15(6), 28–34.
Gao, J., Zhao, P., Zhang, H., Mao, G., & Wang, Y. (2018). Operational water withdrawal and consumption factors for electricity generation technology in china—A literature review. Sustainability, 10(4), 1181.
Gerbens-Leenes, P. W., Hoekstra, A. Y., & van der Meer, T. H. (2009). The water footprint of bioenergy. Proceedings of the National Academy of Sciences, USA, 106(25), 10219–10223.
Gu, Y., Xu, J., Keller, A. A., Yuan, D., Li, Y., Zhang, B., et al. (2015). Calculation of water footprint of the iron and steel industry: A case study in eastern china. Journal of Cleaner Production, 92, 274–281.
Han, Y., Wang, A., & Zhou, F. (2017). Should china continue developing the coal-based synthetic natural gas? Energy Sources, Part B: Economics, Planning and Policy, 12(6), 1–8.
Hoekstra, A. Y. (2002). Virtual water trade. In Proceedings of the international expert meeting on virtual water trade. IHE Delft, The Netherlands, December 13–23, 2002.
Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2011). The water footprint assessment manual: Setting the global standard. London and Washington: Earthscan.
Huo, J., Yang, D., Xia, F., Tang, H., & Zhang, W. (2013). Feasibility analysis and policy recommendations for the development of the coal based SNG industry in Xinjiang. Energy Policy, 61, 3–11.
Hussey, K., & Pittock, J. (2012). The energy-water nexus: Managing the links between energy and water for a sustainable future. Ecology and Society, 17(1), 31.
Intergovernmental Panel on Climate Change (IPCC). (2013). Climate change 2013: The physical science basis. Cambridge: Cambridge University Press.
International Energy Agency (IEA). (2017). World Energy Outlook 2017. https://www.iea.org/weo2017/. Accessed 10 Jan 2018.
Jaramillo, P., Griffin, W. M., & Matthews, H. S. (2007). Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation. Environmental Science and Technology, 41(17), 6290–6296.
Jia, X., Li, Z., Wang, F., Foo, D. C. Y., & Tan, R. R. (2016). Multi-dimensional pinch analysis for sustainable power generation sector planning in China. Journal of Cleaner Production, 112, 2756–2771.
Jin, Y., Tang, X., Feng, C., & Höök, M. (2017). Energy and water conservation synergy in China: 2007–2012. Resources, Conservation and Recycling, 127, 206–215.
Kong, Z., Dong, X., & Liu, G. (2016). Coal-based synthetic natural gas vs. imported natural gas in China: A net energy perspective. Journal of Cleaner Production, 131, 690–701.
Kopyscinski, J., Schildhauer, T. J., & Biollaz, S. M. (2010). Production of synthetic natural gas (SNG) from coal and dry biomass—A technology review from 1950 to 2009. Fuel, 89(8), 1763–1783.
Krawczyk, P., Howaniec, N., & Smoliński, A. (2016). Economic efficiency analysis of substitute natural gas (SNG) production in steam gasification of coal with the utilization of HTR excess heat. Energy, 114, 1207–1213.
Li, S., Ji, X., Zhang, X., Gao, L., & Jin, H. (2014a). Coal to SNG: Technical progress, modeling and system optimization through exergy analysis. Applied Energy, 136, 98–109.
Li, S., Jin, H., & Gao, L. (2013). Cogeneration of substitute natural gas and power from coal by moderate recycle of the chemical unconverted gas. Energy, 55, 658–667.
Li, H., Yang, S., Zhang, J., Kraslawski, A., & Qian, Y. (2014b). Analysis of rationality of coal-based synthetic natural gas (SNG) production in China. Energy Policy, 71, 180–188.
Liu, J., Cui, D., Yao, C., Yu, J., Su, F., & Xu, G. (2016). Syngas methanation in fluidized bed for an advanced two-stage process of SNG production. Fuel Processing Technology, 141, 130–137.
Luo, Z. X., & Zhang, L. M. (2013). China’s CTG industry enters a new development era. China Petroleum and Chemical Industry, 1, 24–25.
Ma, J., & Peng, J. (2013). Research progress on water footprint. Acta Ecologica Sinica, 33, 5458–5466.
Maggio, G., & Cacciola, G. (2012). When will oil, natural gas, and coal peak? Fuel, 98, 111–123.
Man, Y., Han, Y., Hu, Y., Yang, S., & Yang, S. (2018). Synthetic natural gas as an alternative to coal for power generation in China: Life cycle analysis of haze pollution, greenhouse gas emission, and resource consumption. Journal of Cleaner Production, 172, 2503–2512.
Mangmeechai, A., & Pavasant, P. (2013). Water footprints of Cassava- and Molasses-based ethanol production in Thailand. Natural Resources Research, 22(4), 273–282.
Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577–1600.
Mielke, E., Anadon, L. D., & Narayanamurti, V. (2010). Water consumption of energy resource extraction, processing, and conversion. Cambridge, MA: Belfer Center for Science and International Affairs, Harvard Kennedy School.
Ministry of Environmental Protection of China (MEP). (1996). Integrated wastewater discharge standard (GB8978-1996).
Ministry of Environmental Protection of China (MEP). (2002). Environmental quality standards for surface water (GB3838-2002).
Ministry of Environmental Protection of China (MEP). (2006). Emission standard for pollutants from coal industry (GB20426-2006).
Ministry of Environmental Protection of China (MEP). (2008). Cleaner production standard: Coal mining and processing industry (HG446-2008).
Ministry of Environmental Protection of China (MEP). (2017). 2015 annual statistic report on environment in China. http://www.zhb.gov.cn/gzfw_13107/hjtj/hjtjnb/. Accessed 10 Jan 2018.
Ministry of Housing and Urban-Rural Development of China (MHURD). (2010). Sewage discharged into urban sewage water quality standards (CJ343-2010).
Mohr, S. H., Wang, J., Ellem, G., Ward, J., & Giurco, D. (2015). Projection of world fossil fuels by country. Fuel, 141, 120–135.
National Bureau of Statistics of China (NBSC). (2017). China statistical yearbook 2016. Beijing: China Statistics Press.
Qian, W., Huang, Y. Y., Zhang, Q. W., Du, M. H., & Xie, Q. (2011). Development of synthetic technique of substitute natural gas (SNG) from coal. Clean Coal Technology, 17(1), 27–32.
Qin, Y., Wagner, F., Scovronick, N., Peng, W., Yang, J., Zhu, T., et al. (2017). Air quality, health, and climate implications of China’s synthetic natural gas development. In Proceedings of the National Academy of Sciences, USA, 201703167. https://doi.org/10.1073/pnas.1703167114.
Razzaq, R., Li, C., Usman, M., Suzuki, K., & Zhang, S. (2015). A highly active and stable Co4N/γ-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG). Chemical Engineering Journal, 262, 1090–1098.
Rulli, M. C., Bellomi, D., Cazzoli, A., De Carolis, G., & D’Odorico, P. (2016). The water–land–food nexus of first-generation biofuels. Scientific Reports, 6, 22521.
Smajgl, A., Ward, J., & Pluschke, L. (2016). The water–food–energy nexus—Realising a new paradigm. Journal of Hydrology, 533, 533–540.
Spang, E. S., Moomaw, W. R., Gallagher, K. S., Kirshen, P. H., & Marks, D. H. (2014). The water consumption of energy production: An international comparison. Environmental Research Letters, 9(10), 105002.
Tidwell, V., & Moreland, B. (2016). Mapping water consumption for energy production around the Pacific Rim. Environmental Research Letters, 11(9), 094008.
Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D., & Abad, J. D. (2013). Impact of shale gas development on regional water quality. Science, 340(6134), 1235009.
Wang, J., Feng, L., Tang, X., Bentley, Y., & Höök, M. (2017a). The implications of fossil fuel supply constraints on climate change projections: A supply-side analysis. Futures, 86, 58–72.
Wang, J. L., Liu, M. M., Bentley, Y. M., Feng, L. Y., & Zhang, C. H. (2018). Water use for shale gas extraction in the Sichuan Basin, China. Journal of Environmental Management, 226, 13–21.
Wang, J. L., Liu, M. M., McLellan, B. C., & Tang, X. (2017b). Environmental impacts of shale gas development in China: A hybrid life cycle analysis. Resources, Conservation and Recycling, 120, 38–45.
Wang, F. C., Yu, G. S., Gong, X., Liu, H. F., Wang, Y. F., & Liang, Q. F. (2009). Research and development of large-scale coal gasification technology. Chemical Industry & Engineering Progress, 2, 173–180.
Wei, S., & Shi, L. (2015). The coal-oil industrial layout evaluation based on water footprint theory. Acta Ecologica Sinica, 35(12), 4203–4214.
Williams, E. D., & Simmons, J. E. (2013). Water in the energy industry. An introduction. www.bp.com/energysustainabilitychallenge. Accessed 6 Mar 2018.
Wilson, W., Leipzig, T., & Griffiths-Sattenspiel, B. (2012). Burning our rivers: The water footprint of electricity, river network. Comptroller of Public Accounts, Data Division Services, Austin, TX. Publication, Portland, OR.
Xie, K., Li, W., & Zhao, W. (2010). Coal chemical industry and its sustainable development in China. Energy, 35(11), 4349–4355.
Yang, C. J. (2017). Coal chemicals: China’s high-carbon clean coal programme? Climate Policy, 17(4), 470–475.
Yang, S. B., & Han, M. L. (2011). Analysis of water resources and water conservation and emission reduction techniques in thermal power generation. Beijing: Chemical Industry Press.
Yang, C. J., & Jackson, R. B. (2013). China’s synthetic natural gas revolution. Nature Climate Change, 3(10), 852–854.
Yang, S., Qian, Y., Liu, Y., Wang, Y., & Yang, S. (2017). Modeling, simulation, and techno-economic analysis of Lurgi gasification and BGL gasification for coal-to-SNG. Chemical Engineering Research and Design, 117, 355–368.
Yi, Q., Wu, G. S., Gong, M. H., Huang, Y., Feng, J., Hao, Y. H., et al. (2017). A feasibility study for CO2, recycle assistance with coke oven gas to synthetic natural gas. Applied Energy, 193, 149–161.
Zhang, J., Jiang, H., Liu, G., & Zeng, W. H. (2018). A study on the contribution of industrial restructuring to reduction of carbon emissions in China during the five Five-Year Plan periods. Journal of Cleaner Production, 176, 629–635.
Acknowledgments
This study has been supported by the National Natural Science Foundation of China (Grant Nos. 71874201, 71673297, 71503264 and 71874202) and the Humanities and Social Sciences Youth Foundation of the Ministry of Education of China (Grant No. 15YJC630121). We also appreciate receiving the helpful comments from anonymous reviewers of this paper, Dr Roger Bentley of the Petroleum Analysis Centre, Ireland, and Dr. Xinqiang Wei of Economics & Technology Research Institute, CNPC, Beijing, China.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, J., Liu, X., Geng, X. et al. Water Footprint Assessment for Coal-to-Gas in China. Nat Resour Res 28, 1447–1459 (2019). https://doi.org/10.1007/s11053-018-9446-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11053-018-9446-8
Keywords
- Coal-to-gas
- Water footprint
- Water resources
- China