Skip to main content

Advertisement

Log in

Valorization of Agricultural By-Products Within the “Energyscapes”: Renewable Energy as Driving Force in Modeling Rural Landscape

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Due to several growing environmental constraints, renewable energy sources currently play an increasingly crucial role that, owing to their high temporal and spatial variability, needs a careful planning approach. It is important therefore to develop a framework that examines the distribution of different energy sources in a spatio-temporal context. From an energy point of view, a regional territory, such as an internal southern Italian region (the Basilicata Region), can be considered as a paradigmatic case study, because it is characterized by significant sources of renewable energy (e.g., biomass, wind, solar, hydro) connected to its morphological and environmental structure, as well as to its agricultural and food productions. The present paper in based on an analysis of the spatial supply and relationships between renewable energy potentials and rural land, through the use of a Geographic Information System that has been implemented with the aim to analyze the energy system, as well as to optimize the valorization of biomass resources that may be still unutilized within the bioenergy production chain. This study has been carried out even to bridge the gap between energy systems modeling and landscape planning. Within this context, an “Energyscape” may be considered as the effect resulting on the rural landscape from a combination of the supply, demand and infrastructure for energy. This framework could be therefore a starting point for an interdisciplinary analysis able to figure out optimal solutions in decision-making processes, which duly respect the protection and restoring of endangered ecosystems, supporting the decision about an optimal spatial localization of energy plants as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Al-Kassir, A., Ganan-Gomez, J., Mohamad, A. A., & Cuerda-Correa, E. M. (2010). A study of energy production from cork residues: sawdust, sandpaper dust and triturated wood. Energy, 35, 382–386. https://doi.org/10.1016/j.energy.2009.10.005.

    Article  Google Scholar 

  • Antrop, M. (2006). Sustainable landscapes: Contradiction, fiction or utopia? Landscape and Urban Planning, 75, 187–197. https://doi.org/10.1016/j.landurbplan.2005.02.014.

    Article  Google Scholar 

  • Basilicata Region. (2010). PIEAR Piano Regionale Gestione dei Rifiuti.

  • Blaschke, T., Biberacher, M., Gadocha, S., & Schardinger, I. (2013). “Energy landscapes”: Meeting energy demands and human aspirations. Biomass and Bioenergy, 55, 3–16. https://doi.org/10.1016/j.biombioe.2012.11.022.

    Article  Google Scholar 

  • Boyce, R. R. (2006). All possible worlds: A history of geographical ideas, 4th revised edition. https://doi.org/10.1111/j.1467-9272.2006.00518_6.x.

  • Brovarone, E. V., & Puttilli, M. (2008). Territorialità, sostenibilità, rappresentazioni: i paesaggi energetici. Agribusiness Paesaggio & AmbienteVol. XI (2007) n. 3, 199–206.

  • Cardoso, A., & Turhan, E. (2018). Examining new geographies of coal: Dissenting energyscapes in Colombia and Turkey. Applied Energy, 224, 398–408. https://doi.org/10.1016/j.apenergy.2018.04.096.

    Article  Google Scholar 

  • Castellani, C. (1980) Tavole Alsometriche e Stereometriche boschi italiani.

  • Cesaro, A., & Belgiorno, V. (2014). Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chemical Engineering Journal, 240, 24–37. https://doi.org/10.1016/j.cej.2013.11.055.

    Article  Google Scholar 

  • Colantoni, A., Delfanti, L., Recanatesi, F., Tolli, M., & Lord, R. (2016). Land use planning for utilizing biomass residues in Tuscia Romana (central Italy): Preliminary results of a multi criteria analysis to create an agro-energy district. Land Use Policy, 50, 125–133. https://doi.org/10.1016/j.landusepol.2015.09.012.

    Article  Google Scholar 

  • Cosic, B., Stanic, Z., & Duic, N. (2011). Geographic distribution of economic potential of agricultural and forest biomass residual for energy use: Case study Croatia. Energy, 36, 2017–2028. https://doi.org/10.1016/j.energy.2010.10.009.

    Article  Google Scholar 

  • Cozzi, M., Di Napoli, F., Viccaro, M., & Romano, S. (2013). Use of forest residues for building forest biomass supply chains: Technical and economic analysis of the production process. Forests, 4, 1121–1140. https://doi.org/10.3390/f4041121.

    Article  Google Scholar 

  • Cozzi, M., Viccaro, M., Di Napoli, F., Fagarazzi, C., Tirinnanzi, A., & Romano, S. (2015). A spatial analysis model to assess the feasibility of short rotation forestry fertigated with urban wastewater: Basilicata Region case study. Agricultural Water Management, 159, 185–196. https://doi.org/10.1016/j.agwat.2015.06.010.

    Article  Google Scholar 

  • De Baere, L. (2006). Will anaerobic digestion of solid waste survive in the future? Water Science Technology, 53, 187–194. https://doi.org/10.2166/wst.2006.249.

    Article  Google Scholar 

  • Delivand, M. K., Cammerino, A. R. B., Garofalo, P., & Monteleone, M. (2015). Optimal locations of bioenergy facilities, biomass spatial availability, logistics costs and GHG (greenhouse gas) emissions: A case study on electricity productions in South Italy. Journal of Cleaning Production, 99, 129–139. https://doi.org/10.1016/j.jclepro.2015.03.018.

    Article  Google Scholar 

  • ENEA, Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile. (2011). Rapporto annuale efficienza energetica.

  • Europa. (2013). Waste statistics. http://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_statistics.

  • European Commission. (2011). Common Agricultural Policy Reform—an explanation of the main elements.

  • European Union. (2008) La gestione dei rifiuti organici biodegradabili nell’Unione europea.

  • FAO. (1997). The role of wood energy in Europe and OECD, http://www.fao.org/docrep/w7407e/w7407e00.HTM.

  • Forschungen, R. (2013). Energy planning in selected European regions.

  • Fowler, P., Krajačić, G., Lončar, D., & Duić, N. (2009). Modeling the energy potential of biomass - H2RES. International Journal Hydrogen Energy, 34, 7027–7040. https://doi.org/10.1016/j.ijhydene.2008.12.055.

    Article  Google Scholar 

  • Höhn, J., Lehtonen, E., Rasi, S., & Rintala, J. (2014). A geographical information system (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland. Applied Energy, 113, 1–10. https://doi.org/10.1016/j.apenergy.2013.07.005.

    Article  Google Scholar 

  • Howard, D. C., Burgess, P. J., Butler, S. J., Carver, S. J., Cockerill, T., Coleby, A. M., et al. (2013). Energyscapes: Linking the energy system and ecosystem services in real landscapes. Biomass and Bioenergy, 55, 17–26. https://doi.org/10.1016/j.biombioe.2012.05.025.

    Article  Google Scholar 

  • INEA (Istituto Nazionale Economia Agraria). (2006). Atlante Carta Forestale della Basilicata.

  • ISTAT (Italian National Institute for Statistic). (2011a). 6° Censimento Popolazione e Abitazioni. - Popolazione residente—livello comunale. ISTAT. Roma. Italy, https://censimentopopolazione.istat.it/.

  • ISTAT (Italian National Institute for Statistic). (2011b). 6° Censimento Generale dell’Agricoltura. - Utilizzazione del terreno dell’Unità Agricola - livello comunale. ISTAT. Roma. Italy, http://censimentoagricoltura.istat.it/.

  • Karade, S. R. (2010). Cement-bonded composites from lignocellulosic wastes. Construction and Building Materials, 24, 1323–1330. https://doi.org/10.1016/j.conbuildmat.2010.02.003.

    Article  Google Scholar 

  • Lindorfer, J., & Schwarz, M. M. (2013). Site-specific economic and ecological analysis of enhanced production, upgrade and feed-in of biomethane from organic wastes. Water Science Technology, 67, 682–688. https://doi.org/10.2166/wst.2012.617.

    Article  Google Scholar 

  • Lupp, G., Steinhäußer, R., Starick, A., Gies, M., Bastian, O., & Albrecht, J. (2014). Forcing Germany’s renewable energy targets by increased energy crop production: A challenge for regulation to secure sustainable land use practices. Land Use Policy, 36, 296–306. https://doi.org/10.1016/j.landusepol.2013.08.012.

    Article  Google Scholar 

  • Mancini, A. M., Berton, C. M., Apote, C. L. D., Pari, C. L., Sandro, E., & Andrea, S. D. (2008). Caratteristiche tecniche delle biomasse e dei biocombustibili.

  • McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83, 37–46. https://doi.org/10.1016/S0960-8524(01)00118-3.

    Article  Google Scholar 

  • Ministero dell’Ambiente e della Tutela del Territorio. (2003). Le biomasse per l’energia e l’ambiente.

  • Neubert, M., & Walz, U. (2002). Auswertung historischer Kartenwerke für ein Landschaftsmonitoring. Angewandte Geogra phische Informationsverarbeitung, 402, 396–402.

    Google Scholar 

  • Peura, P., & Hyttinen, T. (2011). The potential and economics of bioenergy in Finland. Journal of Cleaning Production, 19, 927–945. https://doi.org/10.1016/j.jclepro.2011.02.009.

    Article  Google Scholar 

  • Picuno, P., Sica, C., Dimitrijevic, A., Tortora, A., Capobianco, R. L., & Statuto, D. (2015). New technologies for the sustainable management and planning of rural land and environment. In The sustainability of agro-food and natural resource systems in the Mediterranean basin, 321–337. Springer, Berlin.

  • Provincia di Latina. (2010). Parte IV. Offerta potenziale di energia rinnovabile ed efficienza energetica.

  • Ralevic, P., Layzell, D. B., & Street, B. (2006). An inventory of the bioenergy potential of British Columbia. BIOCAP Canada Foundation, Ontario, 2006. 8 pp.

  • Schievano, A., D’Imporzano, G., & Adani, F. (2009). Substituting energy crops with organic wastes and agro-industrial residues for biogas production. Journal of Environmental Management, 90, 2537–2541. https://doi.org/10.1016/j.jenvman.2009.01.013.

    Article  Google Scholar 

  • ‘SMART Basilicata’ Project. Contract n. 6386-3, 2012. http://smartbasilicata.tern.it/—in Italian (last access: 3 September 2018).

  • Statuto, D., Cillis, G., & Picuno, P. (2015). Historical cartography and GIS tools for the analysis of land use and landscape changes. In Proceedings of the 43rd Symposium on: “Actual Tasks in Agricultural EngineeringATAE”, Opatija (Croatia), 24-27 February 2015. 441–450

  • Statuto, D., Cillis, G., & Picuno, P. (2016). Analysis of the effects of agricultural land use change on rural environment and landscape through historical cartography and GIS tools. Journal of Agricultural Engineering. https://doi.org/10.4081/jae.2016.468.

    Google Scholar 

  • Statuto, D., Cillis, G., & Picuno, P. (2017). Using historical maps within a GIS to analyze two centuries of rural landscape changes in Southern Italy. Land, 6(3), 65. https://doi.org/10.3390/land6030065.

    Article  Google Scholar 

  • Statuto, D., & Picuno, P. (2017). Valorisation of vernacular farm buildings for the sustainable development of rural tourism in mountain areas of the Adriatic-Ionian macro-region. Journal of Agricultural Engineering, 48(1s), 21–26. https://doi.org/10.4081/jae.2017.643.

    Article  Google Scholar 

  • Statuto, D., Tortora, A., & Picuno, P. (2013). A GIS approach for the quantification of forest and agricultural biomass in the Basilicata region. Journal of Agricultural Engineering. https://doi.org/10.4081/jae.2013.(s1):e125.

    Google Scholar 

  • Strachan, N., Balta-Ozkan, N., Joffe, D., McGeevor, K., & Hughes, N. (2009). Soft-linking energy systems and GIS models to investigate spatial hydrogen infrastructure development in a low-carbon UK energy system. International Journal of Hydrogen Energy, 34, 642–657. https://doi.org/10.1016/j.ijhydene.2008.10.083.

    Article  Google Scholar 

  • Tricase, C., & Lombardi, M. (2009). State of the art and prospects of Italian biogas production from animal sewage: Technical-economic considerations. Renewable Energy, 34, 477–485. https://doi.org/10.1016/j.renene.2008.06.013.

    Article  Google Scholar 

  • Velázquez-Martí, B. (2006). Situación de los sistemas de aprovechamiento de los residuos forestales para su utilización energética. Ecosistemas, 15(1), 77–86.

    Google Scholar 

  • Velázquez-Martí, B., Fernández-González, E., López-Cortés, I., & Salazar-Hernández, D. M. (2011a). Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass and Bioenergy, 35, 3208–3217. https://doi.org/10.1016/j.biombioe.2011.04.042.

    Article  Google Scholar 

  • Velázquez-Martí, B., Fernández-González, E., López-Cortés, I., & Salazar-Hernández, D. M. (2011b). Quantification of the residual biomass obtained from pruning of vineyards in Mediterranean area. Biomass and Bioenergy, 35, 3453–3464. https://doi.org/10.1016/j.biombioe.2011.04.009.

    Article  Google Scholar 

  • Zanon, B., & Verones, S. (2013). Climate change, urban energy and planning practices: Italian experiences of innovation in land management tools. Land Use Policy, 32, 343–355. https://doi.org/10.1016/j.landusepol.2012.11.009.

    Article  Google Scholar 

Download references

Acknowledgments

This research has been carried out in the framework of the Project ‘SMART Basilicata’ (Contract No. 6386-3, 20 July 2016), approved by the Italian Ministry of Education, University and Research—MIUR (PON04A200165) and funded with the Cohesion Fund 2007–2013 of the Basilicata Regional Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Statuto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Statuto, D., Frederiksen, P. & Picuno, P. Valorization of Agricultural By-Products Within the “Energyscapes”: Renewable Energy as Driving Force in Modeling Rural Landscape. Nat Resour Res 28 (Suppl 1), 111–124 (2019). https://doi.org/10.1007/s11053-018-9408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9408-1

Keywords

Navigation