Skip to main content

Advertisement

Log in

GIS-based Analysis of Temporal Evolution of Rural Landscape: A Case Study in Southern Italy

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The apparent features of a rural landscape are the final result of the interaction among several natural and anthropic factors. The analysis of a landscape, as well as the identification of its best management strategies, can be improved when useful information about its modifications along a wide time period is available, so as to assess the effect of the transformations that have taken place there. The implementation within a geographic information system (GIS) of geographical information derived from ancient historical maps, combined with modern digital cartography and recent remote sensing images may provide a very powerful tool for a better-informed analysis and targeted decision-making strategies about the most appropriate rural landscape planning. With the purpose to detect the land use changes in a typical rural landscape in the Basilicata Region (Southern Italy), spatial analysis using free and open-source GIS tools, in which data covering a period of about two centuries, from 1829 to 2017, were implemented. This multi-temporal analysis was carried out to investigate the landscape structure transformations through the assessment of land use change and the implementation of a methodology for the identification of areas in which there has been a natural evolution of the rural landscape. Then, using landscape metrics and spatial analysis tools, some areas in which the landscape has naturally evolved without any anthropic intervention during these 188 years have been identified, and changes occurred on the rural landscape were assessed quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Agnoletti, M. (2014). Rural landscape, nature conservation and culture: Some notes on research trends and management approaches from a (southern) European perspective. Landscape and Urban Planning, 126, 66–73. https://doi.org/10.1016/j.landurbplan.2014.02.012.

    Article  Google Scholar 

  • Antrop, M. (2005). Why landscapes of the past are important for the future. Landscape and Urban Planning, 70, 21–34. https://doi.org/10.1016/j.landurbplan.2003.10.002.

    Article  Google Scholar 

  • Bitelli, G., Cremonini, S., & Gatta, G. (2014). Cartographic heritage: Toward unconventional methods for quantitative analysis of pre-geodetic maps. Journal of Cultural Heritage, 15, 183–195. https://doi.org/10.1016/j.culher.2013.04.003.

    Article  Google Scholar 

  • Cillis, G., & Statuto, D. (2018). Landscape protection and tourist valorisation of the cultural and natural heritage of the UNESCO site of Matera (Italy). In: Public recreation and landscape protection—with nature hand in hand? Conference proceeding 2018 (pp. 226–231).

  • Congedo, L. (2016). Semi-automatic classification plugin documentation. https://doi.org/10.13140/RG.2.2.29474.02242/1. Accessed 16 November 2017.

  • Costantini, E. A. C. (2006). La classificazione della capacità d’uso delle terre (Land Capability Classification). In E. A. C. Costantini (Ed.), Metodi di valutazione dei suoli e delle terre (p. 922). Siena: Cantagalli.

    Google Scholar 

  • Cullotta, S., & Barbera, G. (2011). Mapping traditional cultural landscapes in the Mediterranean area using a combined multidisciplinary approach: Method and application to Mount Etna (Sicily; Italy). Landscape and Urban Planning, 100, 98–108. https://doi.org/10.1016/j.landurbplan.2010.11.012.

    Article  Google Scholar 

  • Cushman, S. A., McGarigal, K., & Neel, M. C. (2008). Parsimony in landscape metrics: Strength, universality, and consistency. Ecological Indicators, 8, 691–703. https://doi.org/10.1016/j.ecolind.2007.12.002.

    Article  Google Scholar 

  • Dannebeck, S., Hoppe, A., Küster, H., & McCracken, D. (2009). Factors affecting cultural landscapes: An overview. In K. Krzywinski, M. O’Connell, & H. Küster (Eds.), Cultural landscapes of Europe. Fields of demeter, haunts of pan (pp. 47–54). Bremen: Aschenbeck Media.

    Google Scholar 

  • Del Lungo, S., Sabia, C. A., & Pacella, C. (2015). Landscape and cultural heritage: Best practices for planning and local development: An example from Southern Italy. Procedia - Social and Behavioral Sciences, 188, 95–102. https://doi.org/10.1016/j.sbspro.2015.03.343.

    Article  Google Scholar 

  • Dramstad, W. E., Tveit, M., Fjellstad, W. J., & Fry, G. L. A. (2006). Relationships between visual landscape preferences and map-based indicators of landscape structure. Landscape and Urban Planning, 78, 465–474. https://doi.org/10.1016/j.landurbplan.2005.12.006.

    Article  Google Scholar 

  • Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., et al. (2012). Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026.

    Article  Google Scholar 

  • Eckartz, S., van den Broek, T., & Ooms, M. (2016). Open data innovation capabilities: Towards a framework of how to innovate with open data BT—Electronic government: 15th IFIP WG 8.5 international conference, EGOV 2016, Guimarães, September 5–8, 2016, Proceedings.

  • ESA. (2017). Introducing sentinel-2. http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Introducing_Sentinel-2. Accessed 15 March 2018.

  • FAO. (1998). FRA 2000 terms and definitions. FRA working paper 1, FAO Forestry Department.

  • Ferrara, A., Salvati, L., Sateriano, A., Carlucci, M., Gitas, I., & Biasi, R. (2016). Unraveling the “stable” landscape: A multi-factor analysis of unchanged agricultural and forest land (1987–2007) in a rapidly-expanding urban region. Urban Ecosystems, 19, 835–848. https://doi.org/10.1007/s11252-015-0509-x.

    Article  Google Scholar 

  • Forman, R. T. T., & Godron, M. (1986). Landscape ecology. New York: Wiley.

    Google Scholar 

  • Franklin, J. F., & Forman, R. T. T. (1987). Creating landscape patterns by forest cutting: Ecological consequences and principles. Landscape Ecology, 1, 5–18. https://doi.org/10.1007/BF02275261.

    Article  Google Scholar 

  • Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., et al. (2017). Copernicus Sentinel-2A calibration and products validation status. Remote Sensing. https://doi.org/10.3390/rs9060584.

    Google Scholar 

  • Gatta, G., Arioti, E., & Bitelli, G. (2017). Geomatics science applied to cartographic heritage and archive sources: A new way to explore the XIXth century Gregorian Cadastre of Bologna (Italy), an ante-litteram 3D GIS. Journal of Cultural Heritage, 23, 68–76. https://doi.org/10.1016/j.culher.2016.06.009.

    Article  Google Scholar 

  • Herrault, P.A., Sheeren, D., Fauvel, M., & Paegelow, M. (2013). Automatic extraction of forests from historical maps based on unsupervised classification in the CIELab color space BT—Geographic information science at the heart of Europe.

  • Herzog, F. & Lausch, A. (2001). Supplementing land-use statistics with landscape metrics. Some methodological considerations. Environmental Monitoring and Assessment, 72, 37–50. https://doi.org/10.1023/A:1011949704308.

    Article  Google Scholar 

  • Inkoom, J. N., Frank, S., Greve, K., Walz, U., & Fürst, C. (2018). Suitability of different landscape metrics for the assessments of patchy landscapes in West Africa. Ecological Indicators, 85, 117–127. https://doi.org/10.1016/j.ecolind.2017.10.031.

    Article  Google Scholar 

  • Jenny, B., & Hurni, L. (2011). Studying cartographic heritage. Analysis and visualization of geometric distortions. Computers & Graphics, 35, 402–411. https://doi.org/10.1016/j.cag.2011.01.005.

    Article  Google Scholar 

  • Jung, M. (2016). LecoS—A python plugin for automated landscape ecology analysis. Ecological Informatics, 31, 18–21. https://doi.org/10.1016/j.ecoinf.2015.11.006.

    Article  Google Scholar 

  • Lafortezza, R., Coomes, D. A., Kapos, V., & Ewers, R. M. (2010). Assessing the impacts of fragmentation on plant communities in New Zealand: Scaling from survey plots to landscapes. Global Ecology and Biogeography, 19, 741–754. https://doi.org/10.1111/j.1466-8238.2010.00542.x.

    Google Scholar 

  • Lafortezza, R., Corry, R. C., Sanesi, G., & Brown, R. D. (2005). Quantitative approaches to landscape spatial planning: clues from landscape ecology. In C. A. Brebbia & A. Kungolos (Eds.), Sustainable development and planning II, (vol. 1, pp. 239–250). Southampton: WIT Press.

    Google Scholar 

  • Lanorte, A., De Santis, F., Nolè, G., Blanco, I., Loisi, R. V., Schettini, E., et al. (2017). Agricultural plastic waste spatial estimation by Landsat 8 satellite images. Computers and Electronics in Agriculture, 141, 35–45. https://doi.org/10.1016/j.compag.2017.07.003.

    Article  Google Scholar 

  • Lasanta, T., Nadal-Romero, E., & Arnáez, J. (2015). Managing abandoned farmland to control the impact of re-vegetation on the environment. The state of the art in Europe. Environmental Science & Policy, 52, 99–109. https://doi.org/10.1016/j.envsci.2015.05.012.

    Article  Google Scholar 

  • Leitão, A. B., Miller, J., Ahern, J., & McGarigal, K. (2006). Measuring landscapes—A planner’s handbook. Washington: Island Press.

    Google Scholar 

  • Liu, H., & Weng, Q. (2013). Landscape metrics for analysing urbanization-induced land use and land cover changes. Geocarto International, 28(7), 582–593. https://doi.org/10.1080/10106049.2012.752530.

    Article  Google Scholar 

  • Magurran, A. E. (1988). Ecological diversity and its measurement. Cambridge: University Press.

    Book  Google Scholar 

  • Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M. E., García-Santos, G., Fernandes, R., et al. (2012). Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of Environment, 120, 91–101. https://doi.org/10.1016/j.rse.2011.09.026.

    Article  Google Scholar 

  • McGarigal, K., Cushman, S.A., & Ene, E. (2012). FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 29 November 2017.

  • Mimet, A., Pellissier, V., Houet, T., Julliard, R., & Simon, L. (2016). A holistic landscape description reveals that landscape configuration changes more over time than composition: Implications for landscape ecology studies. PLoS ONE, 11, 1–16. https://doi.org/10.1371/journal.pone.0150111.

    Article  Google Scholar 

  • Modica, G., Vizzari, M., Pollino, M., Fichera, C. R., Zoccali, P., & Di Fazio, S. (2012). Spatio-temporal analysis of the urban-rural gradient structure: An application in a Mediterranean mountainous landscape (Serra San Bruno, Italy). Earth System Dynamics, 3, 263–279. https://doi.org/10.5194/esd-3-263-2012.

    Article  Google Scholar 

  • Murray, N. J., Keith, D. A., Bland, L. M., Ferrari, R., Lyons, M. B., Lucas, L., et al. (2018). The role of satellite remote sensing in structured ecosystem risk assessments. Science of the Total Environment, 619–620, 249–257. https://doi.org/10.1016/j.scitotenv.2017.11.034.

    Article  Google Scholar 

  • Nagendra, H. (2002). Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Applied Geography, 22, 175–186. https://doi.org/10.1016/S0143-6228(02)00002-4.

    Article  Google Scholar 

  • Nolè, G., Murgante, B., Calamita, G., Lanorte, A., & Lasaponara, R. (2015). Evaluation of urban sprawl from space using open source technologies. Ecological Informatics, 26, 151–161. https://doi.org/10.1016/j.ecoinf.2014.05.005.

    Article  Google Scholar 

  • Olišarová, L., Cillis, G., Statuto, D., & Picuno, P. (2018). Analysis of the impact of settlement patterns on landscape protection in two different European rural areas. In: Public recreation and landscape protection—With nature hand in hand? Conference proceeding 2018 (pp. 34–39).

  • Olsen, L. M., Washington-Allen, R. A., & Dale, V. H. (2005). Time-series analysis of land cover using landscape metrics. GIScience & Remote Sensing, 42(3), 200–223.

    Article  Google Scholar 

  • Pedroli, B., Pinto Correia, T., & Primdahl, J. (2016). Challenges for a shared European countryside of uncertain future. Towards a modern community-based landscape perspective. Landscape Research, 41, 450–460. https://doi.org/10.1080/01426397.2016.1156072.

    Article  Google Scholar 

  • Petras, V., Petrasova, A., Harmon, B., Meentemeyer, R., & Mitasova, H. (2015). Integrating free and open source solutions into geospatial science education. International Journal of Geo-Information, 4, 942–956. https://doi.org/10.3390/ijgi4020942.

    Article  Google Scholar 

  • Plieninger, T., Hui, C., Gaertner, M., & Huntsinger, L. (2014). The impact of land abandonment on species richness and abundance in the Mediterranean Basin: A meta-analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0098355.

    Google Scholar 

  • QGIS Development Team. (2017). QGIS geographic information system. Open source geospatial foundation. URL http://qgis.osgeo.org. Accessed 10 October 2017.

  • Rahman, M. T. U., Tabassum, F., Rasheduzzaman, M., Saba, H., Sarkar, L., Ferdous, J., et al. (2017). Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-017-6272-0.

    Google Scholar 

  • Ridding, L. E., Redhead, J. W., Oliver, T. H., Schmucki, R., McGinlay, J., Graves, A. R., et al. (2018). The importance of landscape characteristics for the delivery of cultural ecosystem services. Journal of Environmental Management, 206, 1145–1154. https://doi.org/10.1016/j.jenvman.2017.11.066.

    Article  Google Scholar 

  • Romero-Díaz, A., Ruiz-Sinoga, J. D., Robledano-Aymerich, F., Brevik, E. C., & Cerdà, A. (2017). Ecosystem responses to land abandonment in Western Mediterranean Mountains. CATENA, 149, 824–835. https://doi.org/10.1016/j.catena.2016.08.013.

    Article  Google Scholar 

  • Salvati, L., & Ferrara, A. (2014). Do land cover changes shape sensitivity to forest fires in peri-urban areas? Urban Forestry & Urban Greening, 13, 571–575. https://doi.org/10.1016/j.ufug.2014.03.004.

    Article  Google Scholar 

  • Sandker, M., Campbell, B. M., Ruiz-Pérez, M., Sayer, J. A., Cowling, R., Kassa, H., et al. (2010). The role of participatory modeling in landscape approaches to reconcile conservation and development. Ecology and Society, 15, 12. https://doi.org/10.5751/ES-03400-150213.

    Article  Google Scholar 

  • Statuto, D., Cillis, G., & Picuno, P. (2015). Historical cartography and GIS tools for the analysis of land use and landscape changes. In: 43rd Symposium “Actual Tasks on Agricultural Engineering - ATAE 2105, 24-27 February, Opatija, Croatia”. Conference proceeding 2015 (pp. 441–450).

  • Statuto, D., Cillis, G., & Picuno, P. (2016). Analysis of the effects of agricultural land use change on rural environment and landscape through historical cartography and GIS tools. Journal of Agricultural Engineering, 47, 28–39. https://doi.org/10.4081/jae.2016.468.

    Article  Google Scholar 

  • Statuto, D., Cillis, G., & Picuno, P. (2017). Using historical maps within a GIS to analyze two centuries of rural landscape changes in Southern Italy. Land, 6, 65. https://doi.org/10.3390/land6030065.

    Article  Google Scholar 

  • Statuto, D., & Picuno, P. (2017). Valorisation of vernacular farm buildings for the sustainable development of rural tourism in mountain areas of the Adriatic-Ionian macro-region. Journal of Agricultural Engineering, 48, 21–26. https://doi.org/10.4081/jae.2017.643.

    Article  Google Scholar 

  • Statuto, D., Tortora, A., & Picuno, P. (2013). A GIS approach for the quantification of forest and agricultural biomass in the Basilicata region. Journal of Agricultural Engineering, 44(2s), 627–631. https://doi.org/10.4081/jae.2013.367.

    Article  Google Scholar 

  • Syrbe, R. U., & Walz, U. (2012). Spatial indicators for the assessment of ecosystem services: Providing, benefiting and connecting areas and landscape metrics. Ecological Indicators, 21, 80–88. https://doi.org/10.1016/j.ecolind.2012.02.013.

    Article  Google Scholar 

  • Tortora, A., Statuto, D., & Picuno, P. (2015). Rural landscape planning through spatial modelling and image processing of historical maps. Land Use Policy, 42, 71–82. https://doi.org/10.1016/j.landusepol.2014.06.027.

    Article  Google Scholar 

  • Urban, D. L., O’Neill, R. V., & Shugart, H. H. J. (1987). Landscape ecology: A hierarchical perspective can help scientists understand spatial patterns. Bioscience. https://doi.org/10.2307/1310366.

    Google Scholar 

  • Uuemaa, E., Mander, Ü., & Marja, R. (2013). Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecological Indicators, 28, 100–106. https://doi.org/10.1016/j.ecolind.2012.07.018.

    Article  Google Scholar 

  • Venzlů, M., Lorencová, H., & Fialová, J. (2017). Proposal for a significant landscape segment. In: Public recreation and landscape protection—With nature hand in hand? Conference proceeding 2017 (pp. 270–276).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Cillis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Statuto, D., Cillis, G. & Picuno, P. GIS-based Analysis of Temporal Evolution of Rural Landscape: A Case Study in Southern Italy. Nat Resour Res 28 (Suppl 1), 61–75 (2019). https://doi.org/10.1007/s11053-018-9402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9402-7

Keywords

Navigation