Skip to main content

Multivariate Mapping of Heavy Metals Spatial Contamination in a Cu–Ni Exploration Field (Botswana) Using Turning Bands Co-simulation Algorithm

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

With a mining-driven economy, Botswana has experienced increased geochemical exploration of minerals around existing mining towns. The mining and smelting of copper and nickel around Selibe-Phikwe in the Central Province are capable of releasing heavy metals including Pb, Fe, Mn, Co, Ni and Cu into the soil environments, thereby exposing humans, plants and animals to health risks. In this study, turning bands co-simulation, a multivariate geostatistical algorithm, was presented as a tool for spatial uncertainty quantification and probability mapping of cross-correlated heavy metals (Co, Mn, Fe and Pb) risk assessment in a semiarid Cu–Ni exploration field of Botswana. A total of 1050 soil samples were collected across the field at a depth of ~ 10 cm in a grid sampling design. Rapid elemental concentration analysis was done using an Olympus Delta Sigma portable X-ray fluorescence device. Enrichment factor, geoaccumulation index and pollution load index were used to assess the potential risk of heavy metals contamination in soils. The partially heterotopic nature of the dataset and strong correlations among the heavy metals favors the use of co-simulation instead of independent simulation in the probability mapping of heavy metal risks in the study area. The strong correlation of Co and Mn to iron infers they are of lithogenic origin, unlike Pb which had weak correlation pointing to its source in the area being of anthropogenic source. Manganese, Co and Fe show low enrichment, whereas Pb had high enrichment suggesting possible lead pollution. We, however, recommend that speciation of Pb in the soils rather than total concentration should be ascertained to infer chances of possible bioaccumulation, and subsequent health risk to human by chronic exposure.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

References

  1. Addo, M. A., Darko, E. O., Gordon, C., Nyarko, B. J. B., Gbadago, J. K., Nyarko, E., et al. (2012). Evaluation of heavy metals contamination of soil and vegetation in the vicinity of a cement factory in the Volta Region, Ghana. International Journal of Science and Technology, 2(1), 40–50.

    Google Scholar 

  2. Agency for Toxic Substance and Disease Registry (ATSDR) (2007). Toxicological profile for lead. http://www.atsdr.cdc.gov/toxprofiles/tp13.pdf.

  3. Anderson, R. H., & Kravitz, M. J. (2010). Evaluation of geochemical associations as a screening tool for identifying anthropogenic trace metal contamination. Environmental Monitoring and Assessment, 167(1), 631–641. https://doi.org/10.1007/s10661-009-1079-2.

    Article  Google Scholar 

  4. Bogaert, P. (1999). On the optimal estimation of the cumulative distribution function in presence of spatial dependence. Mathematical Geology, 31(2), 213–239. https://doi.org/10.1023/a:1007513918820.

    Article  Google Scholar 

  5. Bourennane, H., Douay, F., Sterckeman, T., Villanneau, E., Ciesielski, H., King, D., et al. (2010). Mapping of anthropogenic trace elements inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma, 157(3), 165–174. https://doi.org/10.1016/j.geoderma.2010.04.009.

    Article  Google Scholar 

  6. Bourgault, G. (1997). Spatial declustering weights. Mathematical Geology, 29(2), 277–290. https://doi.org/10.1007/bf02769633.

    Article  Google Scholar 

  7. Buat-Menard, P., & Chesselet, R. (1979). Variable influence of atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 398–411.

    Article  Google Scholar 

  8. Burgos, P., Madejón, E., Pérez-de-Mora, A., & Cabrera, F. (2008). Horizontal and vertical variability of soil properties in a trace element contaminated area. International Journal of Applied Earth Observation and Geoinformation, 10(1), 11–25. https://doi.org/10.1016/j.jag.2007.04.001.

    Article  Google Scholar 

  9. Carr, J. R., & Myers, D. E. (1985). COSIM: A FORTRAN IV program for coconditional simulation. Computers & Geosciences, 11(6), 675–705. https://doi.org/10.1016/0098-3004(85)90012-3.

    Article  Google Scholar 

  10. Chilès, J.-P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainity (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  11. Chilès, J.-P., & Lantuéjoul, C. (2005). Prediction by conditional simulation: Models and algorithms. In M. Bilodeau, F. Meyer, & M. Schmitt (Eds.), Space, structure and randomness: Contributions in honor of Georges Matheron in the field of geostatistics, random sets and mathematical morphology (pp. 39–68). New York, NY: Springer.

    Chapter  Google Scholar 

  12. Cloquet, C., Carignan, J., Libourel, G., Sterckeman, T., & Perdrix, E. (2006). Tracing source pollution in soils using cadmium and lead isotopes. Environmental Science and Technology, 40(8), 2525–2530. https://doi.org/10.1021/es052232+.

    Article  Google Scholar 

  13. Davis, J. C. (1986). Statistics and data analysis in geology (2nd ed.). New York: Wiley.

    Google Scholar 

  14. Desaules, A. (2012). Critical evaluation of soil contamination assessment methods for trace metals. Science of the Total Environment, 426, 120–131. https://doi.org/10.1016/j.scitotenv.2012.03.035.

    Article  Google Scholar 

  15. Deutsch, C. V., & Journel, A. (1998). GSLIB: Geostatistical software and user’s guide (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  16. Emery, X. (2004). Testing the correctness of the sequential algorithm for simulating Gaussian random fields. Stochastic Environmental Research and Risk Assessment, 18(6), 401–413. https://doi.org/10.1007/s00477-004-0211-7.

    Article  Google Scholar 

  17. Emery, X. (2005). Variograms of order ω: A tool to validate a bivariate distribution model. Mathematical Geology, 37(2), 163–181. https://doi.org/10.1007/s11004-005-1307-4.

    Article  Google Scholar 

  18. Emery, X. (2007). Conditioning simulations of Gaussian random fields by ordinary kriging. Mathematical Geology, 39(6), 607–623. https://doi.org/10.1007/s11004-007-9112-x.

    Article  Google Scholar 

  19. Emery, X. (2008). A turning bands program for conditional co-simulation of cross-correlated Gaussian random fields. Computers & Geosciences, 34(12), 1850–1862. https://doi.org/10.1016/j.cageo.2007.10.007.

    Article  Google Scholar 

  20. Emery, X. (2012). Cokriging random fields with means related by known linear combinations. Computers & Geosciences, 38(1), 136–144. https://doi.org/10.1016/j.cageo.2011.06.001.

    Article  Google Scholar 

  21. Emery, X., & Lantuéjoul, C. (2006). TBSIM: A computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method. Computers & Geosciences, 32(10), 1615–1628. https://doi.org/10.1016/j.cageo.2006.03.001.

    Article  Google Scholar 

  22. Evans, D. W., Cutshall, N. H., Cross, F. A., & Wolfe, D. A. (1977). Manganese cycling in the Newport River estuary, North Carolina. Estuarine and Coastal Marine Science, 5(1), 71–80. https://doi.org/10.1016/0302-3524(77)90074-3.

    Article  Google Scholar 

  23. Eze, P. N., Mosokomani, V. S., Udeigwe, T. K., & Oyedele, O. F. (2016a). Quantitative geospatial dataset on the near-surface heavy metal concentrations in semi-arid soils from Maibele Airstrip North, Central Botswana. Data in Brief, 8, 1448–1453. https://doi.org/10.1016/j.dib.2016.08.026.

    Article  Google Scholar 

  24. Eze, P. N., Mosokomani, V. S., Udeigwe, T. K., Oyedele, O. F., & Fagbamigbe, A. F. (2016b). Geostatistical analysis of trace elements PXRF dataset of near-surface semi-arid soils from Central Botswana. Data in Brief, 9, 764–770. https://doi.org/10.1016/j.dib.2016.10.010.

    Article  Google Scholar 

  25. Eze, P. N., Udeigwe, T. K., & Stietiya, M. H. (2010). Distribution and potential source evaluation of heavy metals in prominent soils of Accra Plains. Ghana. Geoderma, 156(3), 357–362. https://doi.org/10.1016/j.geoderma.2010.02.032.

    Article  Google Scholar 

  26. Gneiting, T. (1999). The correlation bias for two-dimensional simulations by turning bands. Mathematical Geology, 31(2), 195–211. https://doi.org/10.1023/a:1007561801981.

    Article  Google Scholar 

  27. Gómez-Hernández, J. J., & Cassiraga, E. F. (1994). Theory and practice of sequential simulation. In M. Armstrong & P. A. Dowd (Eds.), Geostatistical simulations (pp. 111–124). Dordrecht: Springer.

    Chapter  Google Scholar 

  28. Gómez-Hernández, J. J., & Journel, A. G. (1993). Joint sequential simulation of multigaussian fields. In A. Soares (Ed.), Geostatistics Tróia’92 (Vol. 1, pp. 85–94). Dordrecht: Springer, Netherlands.

    Chapter  Google Scholar 

  29. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  30. Gupta, S. K., Vollmer, M. K., & Krebs, R. (1996). The importance of mobile, momilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Science of the Total Environment, 178, 11–20.

    Article  Google Scholar 

  31. Hani, A., & Pazira, E. (2011). Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environmental Monitoring and Assessment, 176(1), 677–691. https://doi.org/10.1007/s10661-010-1612-3.

    Article  Google Scholar 

  32. Hasan, A. B., Kabir, S., Selim Reza, A. H. M., Nazim Zaman, M., Ahsan, A., & Rashid, M. (2013). Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary–Kumira), Chittagong, Bangladesh. Journal of Geochemical Exploration, 125, 130–137. https://doi.org/10.1016/j.gexplo.2012.12.002.

    Article  Google Scholar 

  33. Johnson and Wichern. (1998). Applied multivariate statistical analysis (4th ed.). New York: Prentice-Hall.

    Google Scholar 

  34. Jørgensen, K., & Jensen, L. S. (2009). Chemical and biochemical variation in animal manure solids separated using different commercial separation technologies. Bioresource Technology, 100(12), 3088–3096. https://doi.org/10.1016/j.biortech.2009.01.065.

    Article  Google Scholar 

  35. Journel, A. G., & Xu, W. (1994). Posterior identification of histograms conditional to local data. Mathematical Geology, 26(3), 323–359.

    Article  Google Scholar 

  36. Kampunzu, A. B., Tombale, A. R., Zhai, M., Bagai, Z., Majaule, T., & Modisi, M. P. (2003). Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a Neoarchaean continental active margin in the Zimbabwe craton. Lithos, 71(2), 431–460. https://doi.org/10.1016/S0024-4937(03)00125-7.

    Article  Google Scholar 

  37. Lantuéjoul, C. (1994). Non conditional simulation of stationary isotropic multigaussian random functions. In M. Armstrong & P. A. Dowd (Eds.), Geostatistical simulations (pp. 147–177). Dordrecht: Springer.

    Chapter  Google Scholar 

  38. Lantuéjoul, C. (2002). Geostatistical simulation, models and algorithms (p. 256). Berlin: Springer.

    Book  Google Scholar 

  39. Lee, C. S.-L., Li, X., Shi, W., Cheung, S. C.-N., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356(1), 45–61. https://doi.org/10.1016/j.scitotenv.2005.03.024.

    Article  Google Scholar 

  40. Leuangthong, O., & Deutsch, C. V. (2003). Stepwise conditional transformation for simulation of multiple variables. Mathematical Geology, 35(2), 155–173. https://doi.org/10.1023/a:1023235505120.

    Article  Google Scholar 

  41. Likuku, A. S., Gaboutloeloe, G. K., & Mmolawa, K. B. (2013). Determination and source apportionment of selected heavy metals in aerosol samples collected from Sebele. American Journal of Environmental Sciences, 9(2), 188–200.

    Article  Google Scholar 

  42. Liu, X., Wu, J., & Xu, J. (2006). Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environmental Pollution, 141(2), 257–264. https://doi.org/10.1016/j.envpol.2005.08.048.

    Article  Google Scholar 

  43. Luoma, S. N. (1990). Processes affecting metal concentrations in estuarine and coastal marine sediments. In R. W. Furness & P. S. Rainbow (Eds.), Heavy metals in the marine environment (pp. 51–66). Boca Raton: CRC Press Inc.

    Google Scholar 

  44. Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300(1), 229–243. https://doi.org/10.1016/S0048-9697(02)00273-5.

    Article  Google Scholar 

  45. Mantoglou, A. (1987). Digital simulation of multivariate two- and three-dimensional stochastic processes with a spectral turning bands method. Mathematical Geology, 19(2), 129–149. https://doi.org/10.1007/bf00898192.

    Article  Google Scholar 

  46. Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability, 5(3), 439–468. https://doi.org/10.2307/1425829.

    Article  Google Scholar 

  47. Matheron, G. (1989). Estimating and choosing: An essay on probability in practice. Berlin: Springer.

    Book  Google Scholar 

  48. Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  49. Myers, D. E. (1989). Vector conditional simulation. In M. Armstrong (Ed.), Geostatistics (pp. 283–293). Dordrecht: Springer.

    Chapter  Google Scholar 

  50. Paravarzar, S., Emery, X., & Madani, N. (2015). Comparing sequential Gaussian and turning bands algorithms for cosimulating grades in multi-element deposits. Comptes Rendus Geoscience, 347(2), 84–93. https://doi.org/10.1016/j.crte.2015.05.008.

    Article  Google Scholar 

  51. Pardo-Igúzquiza, E., & Chica-Olmo, M. (1993). The Fourier Integral Method: An efficient spectral method for simulation of random fields. Mathematical Geology, 25(2), 177–217. https://doi.org/10.1007/bf00893272.

    Article  Google Scholar 

  52. Pardo-Igúzquiza, E., & Chica-Olmo, M. (1994). Spectral simulation of multivariable stationary random functions using covariance fourier transforms. Mathematical Geology, 26(3), 277–299. https://doi.org/10.1007/bf02089226.

    Article  Google Scholar 

  53. Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Computers & Geosciences, 30(7), 683–691. https://doi.org/10.1016/j.cageo.2004.03.012.

    Article  Google Scholar 

  54. Qi, J., Zhang, H., Li, X., Lu, J., & Zhang, G. (2016). Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn–Pb mine district in southern China. Environmental Monitoring and Assessment, 188(7), 413. https://doi.org/10.1007/s10661-016-5406-0.

    Article  Google Scholar 

  55. Qu, C., Sun, K., Wang, S., Huang, L., & Bi, J. (2012). Monte Carlo simulation-based health risk assessment of heavy metal soil pollution: A case study in the Qixia Mining Area, China. Human and Ecological Risk Assessment: An International Journal, 18(4), 733–750. https://doi.org/10.1080/10807039.2012.688697.

    Article  Google Scholar 

  56. Reimann, C., & de Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337(1), 91–107. https://doi.org/10.1016/j.scitotenv.2004.06.011.

    Article  Google Scholar 

  57. Rivoirard, J. (1994). Introduction to disjunctive Kriging and nonlinear geostatistics. Oxford: Oxford University Press.

    Google Scholar 

  58. Rule, J. H. (1986). Assessment of trace metal element geochemistry of Hampton Roads and lower Chesapeake Bay area sediments. Environmental Geology and Water Sciences, 8, 209–219.

    Article  Google Scholar 

  59. Sakizadeh, M., Sattari, M. T., & Ghorbani, H. (2017). A new method to consider spatial risk assessment of cross-correlated heavy metals using geo-statistical simulation. Journal of Mining and Environment, 8(3), 373–391. https://doi.org/10.22044/jme.2017.892.

    Article  Google Scholar 

  60. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problem in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33, 566–575.

    Article  Google Scholar 

  61. Tran, T. T. (1994). Improving variogram reproduction on dense simulation grids. Computers & Geosciences, 20(7), 1161–1168. https://doi.org/10.1016/0098-3004(94)90069-8.

    Article  Google Scholar 

  62. Udeigwe, T. K., Young, J., Kandakji, T., Weindorf, D. C., Mahmoud, M. A., & Stietiya, M. H. (2015). Elemental quantification, chemistry, and source apportionment in golf course facilities in a semi-arid urban landscape using a portable X-ray fluorescence spectrometer. Solid Earth, 6(2), 415–424. https://doi.org/10.5194/se-6-415-2015.

    Article  Google Scholar 

  63. Wackernagel, H. (2003). Multivariate geostatistics—An introduction with applications. Berlin: Springer.

    Book  Google Scholar 

  64. Xie, Y., Chen, T.-B., Lei, M., Yang, J., Guo, Q.-J., Song, B., et al. (2011). Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere, 82(3), 468–476. https://doi.org/10.1016/j.chemosphere.2010.09.053.

    Article  Google Scholar 

  65. Zhang, C. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution, 142(3), 501–511. https://doi.org/10.1016/j.envpol.2005.10.028.

    Article  Google Scholar 

  66. Zhang, C., & Selinus, O. (1998). Statistics and GIS in environmental geochemistry—Some problems and solutions. Journal of Geochemical Exploration, 64(1), 339–354. https://doi.org/10.1016/S0375-6742(98)00048-X.

    Article  Google Scholar 

  67. Zimmerman, A. J., & Weindorf, D. C. (2010). Heavy metal and trace metal analysis in soil by sequential extraction: A review of procedures. International Journal of Analytical Chemistry. https://doi.org/10.1155/2010/387803.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. John Carranza and the two anonymous reviewers for their comments, which substantially helped improving the final version of the manuscript. The second author acknowledges the Nazarbayev University for supporting this work through Faculty Development Competitive Research Grants for 2018–2020 under Contract No. 090118FD5336.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nasser Madani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eze, P.N., Madani, N. & Adoko, A.C. Multivariate Mapping of Heavy Metals Spatial Contamination in a Cu–Ni Exploration Field (Botswana) Using Turning Bands Co-simulation Algorithm. Nat Resour Res 28, 109–124 (2019). https://doi.org/10.1007/s11053-018-9378-3

Download citation

Keywords

  • Probability mapping
  • Gaussian random field
  • Semiarid soils
  • Portable XRF device
  • Uncertainty quantification