Skip to main content

Advertisement

Log in

Multivariate Mapping of Heavy Metals Spatial Contamination in a Cu–Ni Exploration Field (Botswana) Using Turning Bands Co-simulation Algorithm

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

With a mining-driven economy, Botswana has experienced increased geochemical exploration of minerals around existing mining towns. The mining and smelting of copper and nickel around Selibe-Phikwe in the Central Province are capable of releasing heavy metals including Pb, Fe, Mn, Co, Ni and Cu into the soil environments, thereby exposing humans, plants and animals to health risks. In this study, turning bands co-simulation, a multivariate geostatistical algorithm, was presented as a tool for spatial uncertainty quantification and probability mapping of cross-correlated heavy metals (Co, Mn, Fe and Pb) risk assessment in a semiarid Cu–Ni exploration field of Botswana. A total of 1050 soil samples were collected across the field at a depth of ~ 10 cm in a grid sampling design. Rapid elemental concentration analysis was done using an Olympus Delta Sigma portable X-ray fluorescence device. Enrichment factor, geoaccumulation index and pollution load index were used to assess the potential risk of heavy metals contamination in soils. The partially heterotopic nature of the dataset and strong correlations among the heavy metals favors the use of co-simulation instead of independent simulation in the probability mapping of heavy metal risks in the study area. The strong correlation of Co and Mn to iron infers they are of lithogenic origin, unlike Pb which had weak correlation pointing to its source in the area being of anthropogenic source. Manganese, Co and Fe show low enrichment, whereas Pb had high enrichment suggesting possible lead pollution. We, however, recommend that speciation of Pb in the soils rather than total concentration should be ascertained to infer chances of possible bioaccumulation, and subsequent health risk to human by chronic exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

Download references

Acknowledgments

We are grateful to Dr. John Carranza and the two anonymous reviewers for their comments, which substantially helped improving the final version of the manuscript. The second author acknowledges the Nazarbayev University for supporting this work through Faculty Development Competitive Research Grants for 2018–2020 under Contract No. 090118FD5336.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Madani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eze, P.N., Madani, N. & Adoko, A.C. Multivariate Mapping of Heavy Metals Spatial Contamination in a Cu–Ni Exploration Field (Botswana) Using Turning Bands Co-simulation Algorithm. Nat Resour Res 28, 109–124 (2019). https://doi.org/10.1007/s11053-018-9378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9378-3

Keywords

Navigation