The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations

Abstract

The rare earth elements (REE) have attracted much attention in recent years, being viewed as critical metals because of China’s domination of their supply chain. This is despite the fact that REE enrichments are known to exist in a wide range of settings, and have been the subject of much recent exploration. Although the REE are often referred to as a single group, in practice each individual element has a specific set of end-uses, and so demand varies between them. Future demand growth to 2026 is likely to be mainly linked to the use of NdFeB magnets, particularly in hybrid and electric vehicles and wind turbines, and in erbium-doped glass fiber for communications. Supply of lanthanum and cerium is forecast to exceed demand. There are several different types of natural (primary) REE resources, including those formed by high-temperature geological processes (carbonatites, alkaline rocks, vein and skarn deposits) and those formed by low-temperature processes (placers, laterites, bauxites and ion-adsorption clays). In this paper, we consider the balance of the individual REE in each deposit type and how that matches demand, and look at some of the issues associated with developing these deposits. This assessment and overview indicate that while each type of REE deposit has different advantages and disadvantages, light rare earth-enriched ion adsorption types appear to have the best match to future REE needs. Production of REE as by-products from, for example, bauxite or phosphate, is potentially the most rapid way to produce additional REE. There are still significant technical and economic challenges to be overcome to create substantial REE supply chains outside China.

This is a preview of subscription content, log in to check access.

Figure 1

Data from Roskill (2016b)

Figure 2

Data from Roskill (2016b)

Figure 3

Data from Roskill (2016b)

Figure 4

Data from Roskill (2016b)

Figure 5

Data for Mountain Pass (sample 11PV01), Bear Lodge (sample GRC-32) and Mt Weld (sample GRC-30) from Verplanck et al. (2016); for Norra Kãrr (sample PGT 407497) from Sjöqvist et al. (2013); for Strange Lake (sample SL-146F) from Salvi and Williams-Jones (1996); for Red Mud (sample 14/T/16) from Deady et al. (2016); for Serra Verde (sample SAP) from Santana et al. (2015); for Chinese ion adsorption clays (sample Hua 95-9) from Bao and Zhao (2008). Chondrite normalizing factors from McDonough and Sun (1995)

Figure 6

Data sources as above

References

  1. Ali, S. (2014). Social and environmental impact of the rare earth industries. Resources, 3(1), 123.

    Article  Google Scholar 

  2. Al-Thyabat, S., & Zhang, P. (2015). In-line extraction of REE from Dihydrate (DH) and HemiDihydrate (HDH) wet processes. Hydrometallurgy, 153, 30–37.

    Article  Google Scholar 

  3. Bao, Z., & Zhao, Z. (2008). Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews, 33(3–4), 519–535.

    Article  Google Scholar 

  4. Berger, A., Janots, E., Gnos, E., Frei, R., & Bernier, F. (2014). Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar. Applied Geochemistry, 41, 218–228.

    Article  Google Scholar 

  5. Binnemans, K., & Jones, P. T. (2015). Rare earths and the balance problem. Journal of Sustainable Metallurgy, 1(1), 29–38.

    Article  Google Scholar 

  6. Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., & Pontikes, Y. (2015). Towards zero-waste valorisation of rare-earth-containing industrial process residues: A critical review. Journal of Cleaner Production, 99, 17–38.

    Article  Google Scholar 

  7. Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., et al. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, 1–22.

    Article  Google Scholar 

  8. Boni, M., Rollinson, G., Mondillo, N., Balassone, G., & Santoro, L. (2013). Quantitative mineralogical characterization of karst bauxite deposits in the Southern Apennines, Italy. Economic Geology, 108(4), 813–833.

    Article  Google Scholar 

  9. Borra, C. R., Pontikes, Y., Binnemans, K., & Van Gerven, T. (2015). Leaching of rare earths from bauxite residue (red mud). Minerals Engineering, 76, 20–27.

    Article  Google Scholar 

  10. Borst, A. M., Friis, H., Andersen, T., Nielsen, T. F. D., Waight, T. E., & Smit, M. A. (2016). Zirconosilicates in the kakortokites of the Ilimaussaq complex, South Greenland: Implications for fluid evolution and HFSE–REE mineralisation in agpaitic systems. Mineralogical Magazine. doi:10.1180/minmag.2016.080.046.

    Google Scholar 

  11. Broom-Fendley, S., Brady, A. E., Wall, F., Gunn, G., & Dawes, W. (2017). REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geology Reviews, 81(Part 1), 23–41.

    Article  Google Scholar 

  12. Castor, S. B. (2008). The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. The Canadian Mineralogist, 46(4), 779–806.

    Article  Google Scholar 

  13. Chakhmouradian, A. R., & Wall, F. (2012). Rare earth elements: minerals, mines, magnets (and more). Elements, 8, 333–340.

    Article  Google Scholar 

  14. Chakhmouradian, A. R., & Zaitsev, A. N. (2012). Rare earth mineralization in igneous rocks: Sources and processes. Elements, 8, 347–353.

    Article  Google Scholar 

  15. Davris, P., Balomenos, E., Panias, D., & Paspaliaris, I. (2016a). Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy, 164, 125–135.

    Article  Google Scholar 

  16. Davris, P., Stopic, S., Balomenos, E., Panias, D., Paspaliaris, I., & Friedrich, B. (2016b). Leaching of rare earth elements from eudialyte concentrate by suppressing silica gel formation. Minerals Engineering. doi:10.1016/j.mineng.2016.12.011.

    Google Scholar 

  17. Deady, É. A., Mouchos, E., Goodenough, K., Williamson, B. J., & Wall, F. (2016). A review of the potential for rare-earth element resources from European red muds: Examples from Seydişehir, Turkey and Parnassus-Giona, Greece. Mineralogical Magazine, 80(1), 43–61.

    Article  Google Scholar 

  18. Dostal, J. (2016). Rare metal deposits associated with alkaline/peralkaline igneous rocks. In P. Verplanck & M. Hitzman (Eds.), Rare earth and critical elements in ore deposits (Vol. Reviews in Economic Geology 18, pp. 33–54). Littleton, Colorado: Society of Economic Geologists.

    Google Scholar 

  19. Du, X., & Graedel, T. E. (2013). Uncovering the end uses of the rare earth elements. Science of the Total Environment, 461–462, 781–784.

    Article  Google Scholar 

  20. EC. (2014). Report on critical raw materials for the EU. http://ec.europa.eu/DocsRoom/documents/10010/attachments/1/translations.

  21. Goodenough, K. M., Schilling, J., Jonsson, E., Kalvig, P., Charles, N., Tuduri, J., et al. (2016). Europe’s rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geology Reviews, 72(Part 1), 838–856.

    Article  Google Scholar 

  22. Goodenough, K. M., & Wall, F. (2016). Critical Metal Mineralogy: Preface to the special issue of Mineralogical Magazine. Mineralogical Magazine, 80(1), 1–4.

    Article  Google Scholar 

  23. Gupta, C. K., & Krishnamurthy, N. (2005). Extractive metallurgy of rare earths. Boca Raton: CRC Press.

    Google Scholar 

  24. GWEC. (2015). Global wind report: Annual market update. http://www.gwec.net/publications/global-wind-report-2/global-wind-report-2015-annual-market-update/.

  25. Hao, Z. (2016). Developments in dysprosium and terbium free rare earth magnets. Paper presented at the 12th international rare earths conference, Hong Kong,

  26. Harmer, R., & Nex, P. (2016). Rare earth deposits of Africa. Episodes, 39(2), 381–406.

    Article  Google Scholar 

  27. Hedrick, J. B., Sinha, S. P., & Kosynkin, V. D. (1997). Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe + 3)O3. Journal of Alloys and Compounds, 250(1–2), 467–470.

    Article  Google Scholar 

  28. Holtstam, D., Andersson, U. B., Broman, C., & Mansfeld, J. (2014). Origin of REE mineralization in the bastnäs-type Fe-REE-(Cu–Mo–Bi–Au) deposits, Bergslagen, Sweden. Mineralium Deposita, 49, 933–966.

    Article  Google Scholar 

  29. IFoR. (2016). World robotics 2016 industrial robots. https://ifr.org/worldrobotics.

  30. Jaireth, S., Hoatson, D. M., & Miezitis, Y. (2014). Geological setting and resources of the major rare-earth-element deposits in Australia. Ore Geology Reviews, 62, 72–128.

    Article  Google Scholar 

  31. Jordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114.

    Article  Google Scholar 

  32. Jordens, A., Sheridan, R. S., Rowson, N. A., & Waters, K. E. (2014). Processing a rare earth mineral deposit using gravity and magnetic separation. Minerals Engineering, 62, 9–18.

    Article  Google Scholar 

  33. Jowitt, S. M., Medlin, C. C., & Cas, R. A. F. (2017). The rare earth element (REE) mineralisation potential of highly fractionated rhyolites: A potential low-grade, bulk tonnage source of critical metals. Ore Geology Reviews, 86, 548–562.

    Article  Google Scholar 

  34. Kogarko, L. N., Williams, C. T., & Woolley, A. R. (2002). Chemical evolution and petrogenetic implications of loparite in the layered, agpaitic Lovozero complex, Kola Peninsula, Russia. Mineralogy and Petrology, 74(1), 1–24.

    Article  Google Scholar 

  35. Kravchenko, S., & Pokrovsky, B. (1995). The Tomtor alkaline ultrabasic massif and related REE–Nb deposits, northern Siberia. Economic Geology, 90(3), 676–689.

    Article  Google Scholar 

  36. Krishnamurthy, N., & Gupta, C. K. (2015). Extractive metallurgy of rare earths (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  37. Kumari, A., Panda, R., Jha, M. K., Kumar, J. R., & Lee, J. Y. (2015). Process development to recover rare earth metals from monazite mineral: A review. Minerals Engineering, 79, 102–115.

    Article  Google Scholar 

  38. Kuzmin, V. I., Pashkov, G. L., Lomaev, V. G., Voskresenskaya, E. N., & Kuzmina, V. N. (2012). Combined approaches for comprehensive processing of rare earth metal ores. Hydrometallurgy, 129–130, 1–6.

    Article  Google Scholar 

  39. Kynicky, J., Smith, M. P., & Xu, C. (2012). Diversity of rare earth deposits: The key example of China. Elements, 8(5), 361–367.

    Article  Google Scholar 

  40. Lazareva, E. V., Zhmodik, S. M., Dobretsov, N. L., Tolstov, A. V., Shcherbov, B. L., Karmanov, N. S., et al. (2015). Main minerals of abnormally high-grade ores of the Tomtor deposit (Arctic Siberia). Russian Geology and Geophysics, 56(6), 844–873.

    Article  Google Scholar 

  41. Li, M., Duan, C., Wang, H., Liu, Z., Wang, M., & Hu, Y. (2016). Lanthanum histidine with pentaerythritol and zinc stearate as thermal stabilizers for poly(vinyl chloride). Journal of Applied Polymer Science. doi:10.1002/app.42878.

  42. Li, M., Jiang, Z., Liu, Z., Hu, Y., Wang, M., & Wang, H. (2013). Effect of lanthanum cyanurate as novel organic thermal stabilizers for polyvinyl chloride. Polymer Engineering & Science, 53(8), 1706–1711.

    Article  Google Scholar 

  43. Lottermoser, B. G. (1990). Rare-earth element mineralisation within the Mt. Weld carbonatite laterite, Western Australia. Lithos, 24(2), 151–167.

    Article  Google Scholar 

  44. Machacek, E., & Fold, N. (2014). Alternative value chains for rare earths: The Anglo-deposit developers. Resources Policy, 42, 53–64.

    Article  Google Scholar 

  45. Machacek, E., & Kalvig, P. (2016). Assessing advanced rare earth element-bearing deposits for industrial demand in the EU. Resources Policy, 49, 186–203.

    Article  Google Scholar 

  46. Mariano, A. N., & Mariano, A. (2012). Rare earth mining and exploration in North America. Elements, 8(5), 369–376.

    Article  Google Scholar 

  47. Marks, M. A. W., Hettmann, K., Schilling, J., Frost, B. R., & Markl, G. (2011). The mineralogical diversity of alkaline igneous rocks: Critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology, 52(3), 439–455.

    Article  Google Scholar 

  48. Massari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36–43.

    Article  Google Scholar 

  49. McDonough, W. F., & Sun, S.-S. (1995). The composition of the earth. Chemical Geology, 120, 223–253.

    Article  Google Scholar 

  50. Moldoveanu, G. A., & Papangelakis, V. G. (2012). Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy, 117–118, 71–78.

    Article  Google Scholar 

  51. Moldoveanu, G. A., & Papangelakis, V. G. (2016). An overview of rare-earth recovery by ion-exchange leaching from ion-adsorption clays of various origins. Mineralogical Magazine, 80(1), 63–76.

    Article  Google Scholar 

  52. Mudd, G. M., & Jowitt, S. M. (2016). Rare earth elements from heavy mineral sands: Assessing the potential of a forgotten resource. Applied Earth Science, 125(3), 107–113.

    Article  Google Scholar 

  53. Nassar, N. T., Du, X., & Graedel, T. E. (2015). Criticality of the rare earth elements. Journal of Industrial Ecology, 19(6), 1044–1054.

    Article  Google Scholar 

  54. Nuttall, M. (2013). Zero-tolerance, uranium and Greenland’s mining future. The Polar Journal, 3(2), 368–383.

    Article  Google Scholar 

  55. Ogata, T., Narita, H., Tanaka, M., Hoshino, M., Kon, Y., & Watanabe, Y. (2016). Selective recovery of heavy rare earth elements from apatite with an adsorbent bearing immobilized tridentate amido ligands. Separation and Purification Technology, 159, 157–160.

    Article  Google Scholar 

  56. Pagano, G., Guida, M., Tommasi, F., & Oral, R. (2015). Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects. Ecotoxicology and Environmental Safety, 115, 40–48.

    Article  Google Scholar 

  57. Riba, J.-R., López-Torres, C., Romeral, L., & Garcia, A. (2016). Rare-earth-free propulsion motors for electric vehicles: A technology review. Renewable and Sustainable Energy Reviews, 57, 367–379.

    Article  Google Scholar 

  58. Roskill. (2016a). Lithium: Global industry, markets and outlook (13th ed.). London, UK: Roskill.

    Google Scholar 

  59. Roskill. (2016b). Rare earths: Global industry, markets and outlook (16th ed.). London, UK: Roskill.

    Google Scholar 

  60. Salvi, S., & Williams-Jones, A. E. (1996). The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochimica et Cosmochimica Acta, 60(11), 1917–1932.

    Article  Google Scholar 

  61. Salvi, S., & Williams-Jones, A. E. (2006). Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos, 91(1–4), 19–34.

    Article  Google Scholar 

  62. Sanematsu, K., & Watanabe, Y. (2016). Characteristics and genesis of ion adsorption-type rare earth element deposits. In P. Verplanck & M. Hitzman (Eds.), Rare earth and critical elements in ore deposits (Vol. Reviews in Economic Geology 18, pp. 55–79). Littleton, Colorado: Society of Economic Geologists.

    Google Scholar 

  63. Santana, I. V., Wall, F., & Botelho, N. F. (2015). Occurrence and behavior of monazite-(Ce) and xenotime-(Y) in detrital and saprolitic environments related to the Serra Dourada granite, Goiás/Tocantins State, Brazil: Potential for REE deposits. Journal of Geochemical Exploration, 155, 1–13.

    Article  Google Scholar 

  64. Sengupta, D., & Van Gosen, B. S. (2016). Placer-type rare earth element deposits. In P. Verplanck & M. Hitzman (Eds.), Rare earth and critical elements in ore deposits (Vol. Reviews in Economic Geology 18, pp. 81–100). Littleton, Colorado: Society of Economic Geologists.

    Google Scholar 

  65. Seredin, V. V. (2010). A new method for primary evaluation of the outlook for rare earth element ores. Geology of Ore Deposits, 52(5), 428–433.

    Article  Google Scholar 

  66. Sheard, E. R., Williams-Jones, A. E., Heiligmann, M., Pederson, C., & Trueman, D. L. (2012). Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Economic Geology, 107, 81–104.

    Article  Google Scholar 

  67. Sjöqvist, A. S. L., Cornell, D. H., Andersen, T., Erambert, M., Ek, M., & Leijd, M. (2013). Three compositional varieties of rare-earth element ore: Eudialyte-group minerals from the Norra Kärr Alkaline Complex, Southern Sweden. Minerals, 3, 94–120.

    Article  Google Scholar 

  68. Smith, M. P., Campbell, L. S., & Kynicky, J. (2015). A review of the genesis of the world class Bayan Obo Fe–REE–Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions. Ore Geology Reviews, 64, 459–476.

    Article  Google Scholar 

  69. Smith, M. P., Moore, K., Kavecsánszki, D., Finch, A. A., Kynicky, J., & Wall, F. (2016). From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements. Geoscience Frontiers, 7(3), 315–334.

    Article  Google Scholar 

  70. Smith Stegen, K. (2015). Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis. Energy Policy, 79, 1–8.

    Article  Google Scholar 

  71. Sørensen, H. (1992). Agpaitic nepheline syenites: A potential source of rare elements. Applied Geochemistry, 7(5), 417–427.

    Article  Google Scholar 

  72. Sørensen, H., Bailey, J. C., & Rose-Hansen, J. (2011). The emplacement and crystallization of the U-Th–REE rich agpaitic and hyperagpaitic lujavrites at Kvanefjeld, Ilímaussaq alkaline complex, South Greenland. Bulletin of the Geological Society of Denmark, 59, 69–92.

    Google Scholar 

  73. Spandler, C., & Morris, C. (2016). Geology and genesis of the Toongi rare metal (Zr, Hf, Nb, Ta, Y and REE) deposit, NSW, Australia, and implications for rare metal mineralization in peralkaline igneous rocks. Contributions to Mineralogy and Petrology, 171(12), 104.

    Article  Google Scholar 

  74. Stark, T., Silin, I., & Wotruba, H. (2016). Mineral processing of eudialyte ore from Norra Kärr. Journal of Sustainable Metallurgy, 3, 1–7.

    Google Scholar 

  75. Timofeev, A., & Williams-Jones, A. E. (2015). The origin of niobium and tantalum mineralization in the nechalacho REE deposit, NWT, Canada. Economic Geology, 110(7), 1719–1735.

    Article  Google Scholar 

  76. Verplanck, P. L., & Hitzman, M. (2016). Rare earth and critical elements in ore deposits (Vol. Reviews in Economic Geology 18). Littleton, Colorado: Society of Economic Geologists.

    Google Scholar 

  77. Verplanck, P. L., Mariano, A. N., & Mariano, A. (2016). Rare earth element ore geology of carbonatites. In P. Verplanck & M. Hitzman (Eds.), Rare earth and critical elements in ore deposits (Vol. Reviews in Economic Geology 18, pp. 5–32). Littleton, Colorado: Society of Economic Geologists.

    Google Scholar 

  78. Voßenkaul, D., Birich, A., Müller, N., Stoltz, N., & Friedrich, B. (2016). Hydrometallurgical processing of eudialyte bearing concentrates to recover rare earth elements via low-temperature dry digestion to prevent the silica gel formation. Journal of Sustainable Metallurgy, 3, 1–11.

    Google Scholar 

  79. Wall, F. (2014). Rare earth elements. In A. G. Gunn (Ed.), Critical metals handbook (pp. 312–339). London: Wiley.

    Google Scholar 

  80. Wall, F., & Mariano, A. N. (1996). Rare earth minerals in carbonatites: A discussion centred on the Kangankunde Carbonatite, Malawi. In A. P. Jones, F. Wall, & C. T. Williams (Eds.), Rare earth minerals: Chemistry, origin and ore deposits (pp. 193–226). London: Chapman and Hall.

    Google Scholar 

  81. Wall, F., Williams, C., Woolley, A., & Nasraoui, M. (1996). Pyrochlore from weathered carbonatite at Lueshe, Zaire. Mineralogical Magazine, 60(5), 731–750.

    Article  Google Scholar 

  82. Wang, Q., Deng, J., Liu, X., Zhang, Q., Sun, S., Jiang, C., et al. (2010). Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China. Journal of Asian Earth Sciences, 39(6), 701–712.

    Article  Google Scholar 

  83. Xie, F., Zhang, T. A., Dreisinger, D., & Doyle, F. (2014). A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering, 56, 10–28.

    Article  Google Scholar 

  84. Xu, C., Kynický, J., Smith, M. P., Kopriva, A., Brtnický, M., Urubek, T., et al. (2017). Origin of heavy rare earth mineralization in South China. Nature Communications, 8, 14598.

    Article  Google Scholar 

  85. Yang, X. J., Lin, A., Li, X.-L., Wu, Y., Zhou, W., & Chen, Z. (2013). China’s ion-adsorption rare earth resources, mining consequences and preservation. Environmental Development, 8, 131–136.

    Article  Google Scholar 

Download references

Acknowledgments

The overview presented here has been developed through discussions and focused research carried out as part of the EURARE, SoS RARE and HiTech AlkCarb projects. The EURARE project is funded by the European Community’s Seventh Framework Programme under Grant Agreement No. 309373. The SoS RARE project is funded by the UK’s Natural Environment Research Council under Grant Agreement No. NE/M011429/1. The HiTech AlkCarb project is funded by the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 689909). KG publishes with the permission of the Executive Director of the British Geological Survey. The Editor-in-Chief, John Carranza, and two anonymous reviewers are thanked for their positive comments on the initial manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kathryn M. Goodenough.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goodenough, K.M., Wall, F. & Merriman, D. The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Nat Resour Res 27, 201–216 (2018). https://doi.org/10.1007/s11053-017-9336-5

Download citation

Keywords

  • Rare earth elements
  • Resources
  • Supply chain
  • Minerals processing