Skip to main content
Log in

Laboratory Enrichment of Radioactive Assemblages and Estimation of Thorium and Uranium Radioactivity in Fractions Separated from Placer Sands in Southeast Bangladesh

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The present study reports the likely first attempt of separating radioactive minerals for estimation of activity concentration in the beach placer sands of Bangladesh. Several sand samples from heavy mineral deposits located at the south-eastern coastal belt of Bangladesh were processed to physically upgrade their radioactivity concentrations using plant and laboratory equipment. Following some modified flow procedure, individual fractions were separated and investigated using gamma-ray spectrometry and powder-XRD analysis. The radioactivity measurements indicated contributions of the thorium and uranium radioactive series and of 40K. The maximum values of 232Th and 238U, estimated from the radioactivity of 208Tl and 234Th in secular equilibrium, were found to be 152,000 and 63,300 Bq/kg, respectively. The fraction of the moderately conductive part in electric separation contained thorium predominantly, while that of the non-conductive part was found to be uranium rich. The present arrangement of the pilot plant cascade and the fine tuning of setting parameters were found to be effective and economic separation process of the radioactive minerals from placer sands in Bangladesh. Probable radiological impacts and extraction potentiality of such radioactive materials are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alam, M. N., Chowdhury, M. I., Kamal, M., Ghose, S., Islam, M. N., Mustafa, M. N., et al. (1999). The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox’s Bazar, Bangladesh. Journal of Environmental Radioactivity, 46, 243–250.

    Article  Google Scholar 

  • Alencar, A. S., & Freitas, A. C. (2005). Reference levels of natural radioactivity for the beach sands in a Brazilian southeastern coastal region. Radiation Measurements, 40, 76–83.

    Article  Google Scholar 

  • Arnedo, M. A., Tejera, A., Rubiano, J. G., Alonso, H., Gil, J. M., Rodrı´guez, R., et al. (2013). Natural radioactivity measurements of beach sands in Gran Canaria, Canary islands (Spain). Radiation Protection Dosimetry, 156(1), 75–86.

    Article  Google Scholar 

  • Biswas, M. A. B., & Kundu, S. K. (1985). Mode of occurrence and origin of heavy mineral deposits of Nijhum Dwip, Hatia. Nuclear Science and Application, 16&17, 69.

    Google Scholar 

  • BSEC (1994). Beach Sand Exploitation Center Brochure, Cox’s Bazar, Scientific Information Division, Bangladesh Atomic Energy Commission, 1–21.

  • Chen, Y. D., O’Reilly, S. Y., Griffin, W. L., & Krogh, T. E. (1998). Combined U-Pb dating and Sm-Nd studies of lower crustal and mantle xenoliths from the Delegate basaltic pipes, southeastern Australia. Contributions in Mineral Petrology, 130, 154–161.

    Article  Google Scholar 

  • Chinnaesakki, S., Bara, S. V., Sartandel, S. J., Tripathi, R. M., & Puranik, V. D. (2010). Radiological characterisation of synthetic rutile using HPGe gamma spectrometry. Radiation Protection Dosimetry, 140, 378–382.

    Article  Google Scholar 

  • Chowdhury, M. I. (2003). Potentiality of radioactive materials occurring as assemblages with placer minerals in Cox’s Bazar beach area. Beach Sand Minerals Exploitation Center, Cox’s Bazar, Bangladesh, BSMEC/TR-1/2003.

  • Corfu, F., Hanchar, J. M., Hoskin, P. W. O., & Kinny, P. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1), 469–500.

    Article  Google Scholar 

  • Crouse, D., & Brown, K. (1959). The amex process for extracting thorium ores with alkyl amines. Industrial and Engineering Chemistry, 51(12), 1461.

    Article  Google Scholar 

  • de Meijer, R. J., James, I. R., Jennings, P. J., & Koeyers, J. E. (2001). Cluster analysis of radionuclide concentrations in beach sand. Applied Radiation and Isotopes, 54, 535–542.

    Article  Google Scholar 

  • Duong, P. V., Tschurlovits, M., Buchtela, K., & Dien, P. Q. (1996). Enrichment of radioactive materials in sand deposits of Vietnam as a result of mineral processing. Environment International, 22(1), 271–274.

    Article  Google Scholar 

  • Gandhi, M. S., Ravisankar, R., Rajalakshmi, A., Sivakumar, S., Chandrasekaran, A., & Pream Anand, D. A. (2014). Measurements of natural gamma radiation in beach sediments of north east coast of Tamil Nadu, India by gamma ray spectrometry with multivariate statistical approach. Journal of Radiation Research and Applied Sciences, 7, 7–17.

    Article  Google Scholar 

  • Haridasan, P. P., Pillai, P. M. B., Khan, A. H., & Puranik, V. D. (2006). Natural radionuclides in zircon and related radiological impacts in mineral separation plants. Radiation Protection Dosimetry, 121(4), 364–369.

    Article  Google Scholar 

  • Hazin, C. A., Gazineu, M. H. P. & de Farias E. E. G. (2008). Uranium and Thorium in Zircon Sands Processed in Northeastern Brazil. In Proceedings of International Congress of the International Radiation Protection Association (IRPA): Strengthening Radiation Protection Worldwide. Buenos Aires (Argentina), IPRA.

  • Huy, N. Q., & Luyen, T. V. (2004). A method to determine 238U activity in environmental soil samples by using 63.3 keV—photo peak—gamma HPGe spectrometer. Applied Radiation and Isotopes, 61, 1419–1424.

    Article  Google Scholar 

  • IAEA. (1989). Construction and use of calibration facilities for radiometric field equipment, Technical Reports Series No. 309. Vienna: IAEA.

    Google Scholar 

  • IAEA (1996). International basic safety standards for protection against ionizing radiation and for the safety of radiation sources, Safety Series no. 115, Schedule II, Vienna, Austria.

  • IAEA (2013). Technical report 419 (http://www.world-nuclear.org/info/inf30a.html).

  • ICRP. (1983). Radionuclide transformations, energy and intensity of emissions, ICRP Publication 38, Ann. ICRP vol. 11–13.

  • Jasy, J. B., Rahman, M. J. J., & Yeasmin, R. (2010). Sand petrology of the exposed bar deposits of the Brahmaputra–Jamuna river, Bangladesh: Implication for provenance. Bangladesh Geoscience Journal, 16, 1–22.

    Google Scholar 

  • Kabir, M. Z., Deeba, F., Rajib, M., Karim, M. M. & Zaman, M. M. (2010). Radioactivity and heavy mineral concentration at Cox’s Bazar beach area, Bangladesh. Beach Sand Minerals Exploitation Center, Cox’s Bazar, Bangladesh, BSMEC/TR-1/Dec-2010.

  • Kannan, V., Rajan, M. P., Iyengar, M. A. R., & Ramesh, R. (2002). Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry. Applied Radiation and Isotopes, 57, 109–119.

    Article  Google Scholar 

  • Lu, X. & Zhang, X. (2008). Measurement of natural radioactivity in beach sands from Rizhao bathing beach, China, Radiation Protection Dosimetry, 130(3), 385–388.

  • Mahawatte, P., & Fernando, K. N. R. (2013). Radioactivity levels in beach sand from the West Coast of Sri Lanka. Journal National Science Foundation Sri Lanka, 41(4), 279–285.

    Article  Google Scholar 

  • Malain, D., Regan, P. H., Bradley, D. A., Matthews, M., Santawamaitre, T., & Al-Sulaiti, H. A. (2010). Measurements of NORM in beach sand samples along the Andaman coast of Thailand after the 2004 tsunami. Nuclear Instruments and Methods in Physics Research A, 619, 441–445.

    Article  Google Scholar 

  • Mernagh, T. P. & Miezitis, Y. (2008). A review of the geochemical processes controlling the distribution of thorium in the earth’s crust and Australia’s thorium resources, Geoscience Australia Records (2008/05).

  • Mohanty, A. K., Sengupta, D., Das, S. K., Saha, S. K., & Van, K. V. (2004a). Natural radioactivity and radiation exposure in the high background area at Chhatrapur beach placer deposit of Orissa, India. Journal of Environmental Radioactivity, 75, 15–33.

    Article  Google Scholar 

  • Mohanty, A. K., Sengupta, D., Das, S. K., Vijayan, V., & Saha, S. K. (2004b). Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India. Radiation Measurements, 38, 153–165.

    Article  Google Scholar 

  • Mollah, A. S., Rahman, M. M., Koddus, M. A., Husain, S. R., & Malek, M. A. (1987). Measurement of high natural background radiation levels by TLD at Cox’s Bazar Coastal areas in Bangladesh. Radiation Protection Dosimetry, 18(1), 39–41.

    Google Scholar 

  • Pillai, P. M. B. (2007). Naturally occurring radioactive materials (NORM) in the extraction and processing of rare earths. In Proceedings of an International Symposium on NORM in Seville, Spain, pp. 19–22.

  • Rahman, M. H., Islam, M. A., Shine, F. M. M., & Ahmed, F. (1994). Heavy mineral studies of the Silkhali-Teknaf beach, dune and cliff sands, Cox’s Bazar, Bangladesh. Indian Minerals, 48, 167.

    Google Scholar 

  • Ramasamy, V., Dheenathayalu, M., Ravisankar, R., Ponnusamy, V., Rajamanickkam, G. V., Sahayam, D. K., et al. (2004). Natural radioactivity measurements in beach-rock samples of south-east coast of Tamil Nadu, India. Radiation Protection Dosimetry, 111(2), 229–235.

    Article  Google Scholar 

  • Righi, S., Andretta, M., & Bruzzi, L. (2005). Assessment of the radiological impacts of a zircon sand processing plant. Journal of Environmental Radioactivity, 82, 237.

    Article  Google Scholar 

  • Schmidth, R. G. & Asad, S. A. (1962), Beach placers containing radioactive minerals, Bay of Bengal, East Pakistan. US Geological Survey Professional Paper, 450-C, pp. 12–14.

  • Schmidth, R. G., & Asad, S. A. (1963). A reconnaissance survey of radioactive beach sand at Cox’s Bazar, Pakistan. Geological Survey Interim Report, 3, 14.

    Google Scholar 

  • Seddeeka, M. K., Badran, H. M., Sharshar, T., & Elnimr, T. (2005). Characteristics, spatial distribution and vertical profile of gamma-ray emitting radionuclides in the coastal environment of North Sinai. Journal of Environmental Radioactivity, 84, 21–50.

    Article  Google Scholar 

  • Shetty, P. K., Narayana, Y., & Siddappa, K. (2006). Vertical profiles and enrichment pattern of natural radionuclides in monazite areas of coastal Kerala. Journal of Environmental Radioactivity, 86, 132–142.

    Article  Google Scholar 

  • Singh, H. N., Shanker, D., Neelakandan, V. N., & Singh, V. P. (2007). Distribution patterns of natural radioactivity and delineation of anomalous radioactive zones using in situ radiation observations in Southern Tamil Nadu, India. Journal of Hazardous Materials, 141, 264–272.

    Article  Google Scholar 

  • Uddin, A., & Lundberg, N. (1998). Unroofing history of eastern Himalaya and the Indo-Burman Ranges: Heavy mineral study of the Cenozoic sediments from the Bengal Basin, Bangladesh. Journal of Sedimentary Research, 68(3), 465–472.

    Article  Google Scholar 

  • UNSCEAR. (1993). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effect of Atomic Radiation, United Nations. New York: UNSCEAR.

    Google Scholar 

  • UNSCEAR. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effect of Atomic Radiation, United Nations. New York: UNSCEAR.

    Google Scholar 

  • OECD NEA & IAEA, Uranium 2011: Resources, Production and Demand. (http://www.oecd-nea.org/ndd/pubs/2012/7059-uranium-2011.pdf).

  • Vassas, C., Pourcelot, L., Vella, C., Carpe´na, J., Pupin, J. P., Bouisset, P., et al. (2006). Mechanisms of enrichment of natural radioactivity along the beaches of the Camargue, France. Journal of Environmental Radioactivity, 91, 146–159.

    Article  Google Scholar 

  • Veiga, R., Sanches, N., Anjos, R. M., Macario, K., Bastos, J., Iguatemya, M., et al. (2006). Measurement of natural radioactivity in Brazilian beach sands. Radiation Measurements, 41, 189–196.

    Article  Google Scholar 

  • WNA (2012). World Nuclear Association market report (http://www.world-nuclear.org/info/).

  • Zaman, M. M., Kabir, M. Z., Deeba, F., Rajib, M., & Rana, S. M. (2009a). Finding a new heavy mineral deposit and its mineralogical composition at Sonarpara, Cox’s Bazar. The Journal of NOAMI, 26(1), 17–30.

    Google Scholar 

  • Zaman, M. M., Kabir, M. Z., Deeba, F., Rajib, M., Rana, S. M. & Rahman, M. A. (2008). The prospect of economic heavy minerals in the sand bars of the Jamuna river at Chilmari of Kurigram district, Bangladesh. In Proceedings of XII Geological Conference of Bangladesh Geological Society, 19–20 March, Dhaka, Bangladesh.

  • Zaman, M. M., Rajib, M., Kabir, M. Z., Deeba, F. & Rana, S. M. (2009b) Anomalous radioactivity due to the presence of heavy minerals in beach sands of Cox’s Bazar. In Proceedings of International Conference on Geoscience for Global Development, 26–31 October, Dhaka, Bangladesh.

  • Zaman, M., Schubert, M., & Antao, S. (2012). Elevated radionuclide concentrations in heavy mineral-rich beach sands in the Cox’s Bazar region, Bangladesh and related possible radiological effects. Isotopes in Environmental and Health Studies, 48, 512–525.

    Article  Google Scholar 

Download references

Acknowledgments

The present work was financially supported by Yuasa Kokusai Kyoiku Gakujutsu Koyru Zaidan (Yuasa International Foundation for Education and Academic Exchange). We would also like to thank Dr. H. Minowa from the Jikei University School of Medicine for fruitful discussions about sample analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Sasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, T., Rajib, M., Akiyoshi, M. et al. Laboratory Enrichment of Radioactive Assemblages and Estimation of Thorium and Uranium Radioactivity in Fractions Separated from Placer Sands in Southeast Bangladesh. Nat Resour Res 24, 209–220 (2015). https://doi.org/10.1007/s11053-014-9248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-014-9248-6

Keywords

Navigation