Skip to main content

Advertisement

Log in

Image Segmentation for Hydrothermal Alteration Mapping Using PCA and Concentration–Area Fractal Model

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Information extraction from processed remotely sensed images, in the case of missing initial spectra of pixels, can be a challenge for the users. In such situations, application of conventional methods based on spectral properties of pixels is impractical. We took advantage of the fractal theory for image segmentation of a principal component (PC) image for hydrothermal alteration mapping. The selected input images included short wave infrared bands of ASTER imagery covering the Darrehzar porphyry copper mine and surrounding areas with well-known hydrothermal alteration zones. Hydrothermal alteration like other geological processes can show spatial distribution with fractal properties. Principal component analysis was used to enhance hydrothermal alteration associated with the Darrehzar porphyry copper deposit. None of the resulting PCs were appropriate to portray clearly important alteration types in the study area. The PC1 image, which contains more than 98% of variance of the input bands, was selected for image segmentation using a digital number–area technique based on the established concentration–area fractal model. This technique was proposed based on frequency distributions and spatial correlation and variability of pixel values. The resulting hydrothermal alteration map indicates intense phyllic, weak phyllic, and propylitic as the main alteration types exposed at the surface of the Darrehzar area. In addition, the proposed technique delineated the phyllic zone in the exposed mine pit and a transition zone between inner phyllic and surrounding propylitic alteration zones. Field investigation and sampling in 23 locations including spectral measurements, XRD and thin section studies, confirmed the accuracy of the classified image by the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Abrams, M., Hook, S., Ramachandran, B., & Center, E. D. (2002). ASTER User Handbook, Version 2. Jet Propulsion Laboratory, 4800.

  • Afzal, P., Alghalandis, Y. F., Khakzad, A., Moarefvand, P., & Omran, N. R. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration, 108(3), 220–232.

    Article  Google Scholar 

  • Agterberg, F. P. (1995). Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review, 37(1), 1–8.

    Article  Google Scholar 

  • Agterberg, F. P., Cheng, Q., & Wright, D. F. (1993). Fractal modelling of mineral deposits. J. Elbrond & X. Tang (Eds.), Application of computers and operations research in the mineral industry (pp. 43–53), Proceedings of the 24th APCOM Symposium. Montreal: Canadian Institute of Mining Metalling and Petroleum.

  • Alavi, M. (1980). Tectono-stratigraphic evolution of the Zagrosside of Iran. Geology, 8(3), 144–149.

    Article  Google Scholar 

  • Aviles, C. A., & Scholz, C. H. (1987). Fractal analysis applied to characteristic segments of the San Andreas Fault. Journal of Geophysical Research, 32, 331–344.

    Article  Google Scholar 

  • Blenkinsop, T. (1994). The fractal distribution of gold deposits: Two examples from the Zimbabwe Archaean Craton. In J. H. Kruhl (Ed.), Fractals and dynamic systems in geoscience. Berlin: Springer.

    Google Scholar 

  • Boomeri, M., Nakashima, K., & Lentz, D. R. (2009). The Miduk porphyry Cu deposit, Kerman, Iran: A geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes. Journal of Geochemical Exploration, 103(1), 17–29.

    Article  Google Scholar 

  • Burrough, P. A. (1981). Fractal dimensions of landscapes and other environmental data. Nature, 294(5838), 240–242.

    Article  Google Scholar 

  • Carlson, C. A. (1991). Spatial distribution of ore deposits. Geology, 19(2), 111–114.

    Article  Google Scholar 

  • Carranza, E. J. M. (2009a). Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews, 35(3), 383–400.

    Article  Google Scholar 

  • Carranza, E. J. M. (2009b). Geochemical anomaly and mineral prospectivity mapping in GIS. In M. Hale (Ed.), Handbook of exploration and environmental geochemistry (Vol. 11). Amsterdam: Elsevier.

  • Carranza, E. J. M. (2011). From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resource Geology, 61(1), 30–51.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2002). Mineral imaging with Landsat Thematic Mapper data for hydrothermal alteration mapping in heavily-vegetated terrane. International Journal of Remote Sensing, 23(22), 4827–4852.

    Article  Google Scholar 

  • Carranza, E. J. M., Owusu, E., & Hale, M. (2009). Mapping of prospectivity and estimation of number of undiscovered prospects for lode-gold, southwestern Ashanti Belt, Ghana. Mineralium Deposita, 44(8), 915–938.

    Article  Google Scholar 

  • Carranza, E. J. M., Van Ruitenbeek, F. J. A., Hecker, C., Van der Meijde, M., & Van der Meer, F. D. (2008). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. International Journal of Applied Earth Observation and Geoinformation, 10(3), 374–387.

    Article  Google Scholar 

  • Cheng, Q. (1994). Multifractal modeling and spatial analysis with GIS: Gold potential estimation in the Mitchell-Sulphurets area, northwestern British Columbia. Unpublished Doctoral Dissertation, School of Graduate Studies and Research, University of Ottawa.

  • Cheng, Q. (1995). The perimeter–area fractal model and its application in geology. Mathematical Geology, 27(1), 69–82.

    Article  Google Scholar 

  • Cheng, Q. (1997). Discrete multifractals. Mathematical Geology, 29(2), 245–266.

    Article  Google Scholar 

  • Cheng, Q. (1999a). Spatial and scaling modeling for geochemical anomaly separation. Journal of Geochemical Exploration, 65(3), 175–194.

    Article  Google Scholar 

  • Cheng, Q. (1999b). Multifractality and spatial statistics. Computers & Geosciences, 25(9), 949–961.

    Article  Google Scholar 

  • Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1), 314–324.

    Article  Google Scholar 

  • Cheng, Q., & Agterberg, F. P. (1995). Multifractal modeling and spatial point processes. Mathematical Geology, 27(7), 831–845.

    Article  Google Scholar 

  • Cheng, Q., & Agterberg, F. P. (1996). Multifractal modeling and spatial statistics. Mathematical Geology, 28(1), 1–16.

    Article  Google Scholar 

  • Cheng, Q., & Agterberg, F. P. (2009). Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Computers & Geosciences, 35(2), 234–244.

    Article  Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2), 109–130.

    Article  Google Scholar 

  • Cheng, O., Agterberg, F. P., & Bonham-Carter, G. F. A. (1996). Special analysis method for geochemical anomaly separation. Journal of Geochemical Exploration, 56(2), 183–195.

    Article  Google Scholar 

  • Cheng, Q., Bonham-Carter, G. F., Hall, G. E. M., & Bajc, A. (1997). Statistical study of trace elements in the soluble organic and amorphous Fe–Mn phases of surficial sediments, Sudbury Basin, 1, Multivariate and spatial analysis. Journal of Geochemical Exploration, 59(1), 27–46.

    Article  Google Scholar 

  • Cheng, Q., & Li, Q. (2002). A fractal concentration–area method for assigning a color palette for image representation. Computers & Geosciences, 28(4), 567–575.

    Article  Google Scholar 

  • Cheng, Q., Xia, Q., Li, W., Zhang, S., Chen, Z., Zuo, R., et al. (2010). Density/area power–law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China. Biogeosciences, 7(10), 3019–3025.

    Article  Google Scholar 

  • Cheng, Q., Xu, Y., & Grunsky, E. (1999). Integrated spatial and spectrum analysis for geochemical anomaly separation. In S. J. Lippard, A. Naess, & R. Sinding-Larsen (Eds.), Proceedings of International Association for Mathematical Geology Meeting (Vol. I, pp. 87–92), Trondheim, Norway.

  • Cheng, Q., Xu, Y., & Grunsky, E. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9(1), 43–52.

    Article  Google Scholar 

  • Chiles, J. P. (1988). Fractal and geostatistical methods for modelling of a fracture network. Mathematical Geology, 20(6), 631–654.

    Article  Google Scholar 

  • Clark, R. N., Swayze, G. A., Gallagher, A. J., King, T. V. V., & Calvin, W. M. (1993). The U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 micrometers. U.S. Geological Survey Open File Report 93-592.

  • Crosta, A. P., & Moore, J. M. (1989). Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: A prospecting case history in Greenstone Belt Terrain. In Proceedings of the Seventh Thematic Conference on Remote Sensing for Exploration Geology (pp. 1173–1187). Calgary, Canada: Environmental Research Institute of Michigan.

  • Crosta, A. P., Souza Filho DE, C. R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposit in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24(21), 4233–4240.

    Article  Google Scholar 

  • Davis, J. C. (2002). Statistics and data analysis in Geology (3rd ed.) (pp. 342–353). New York: Wiley.

  • Deng, J., Fang, Y., Yang, L. Q., Yang, J. C., Sun, Z. S., Wang, J. P., et al. (2001). Numerical modelling of ore-forming dynamics of fractal dispersive fluid systems. Acta Geologica Sinica, 75(2), 220–232.

    Google Scholar 

  • Deng, J., Wang, Q. F., Huang, D. H., Wan, L., Yang, L. Q., & Gao, B. F. (2006). Transport network and flow mechanism of shallow ore-bearing magma in Tongling ore cluster area. Science in China (Series D), 49(4), 397–407.

    Article  Google Scholar 

  • Deng, J., Wang, Q. F., Wan, L., Yang, L. Q., & Liu, X. F. (2007). Singularity of Au distribution in alteration rock type deposit—an example from Dayingezhuang gold ore deposit. In P. D. Zhao, F. Agterberg, & Q. Cheng (Eds.), The 12th Conference of the International Association for Mathematical Geology (pp. 44–47). Beijing, China: University of Geosciences Printing House.

    Google Scholar 

  • Deng, J., Wang, Q. F., Wan, L., Yang, L. Q., Zhou, L., & Zhao, J. (2008). The random difference of the trace element distribution in skarn and marbles from Shizishan orefield, Anhui Province, China. Journal of China University of Geosciences, 19(4), 123–137.

    Google Scholar 

  • Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, Q., & Liu, H. (2010). Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration, 105(3), 95–105.

    Article  Google Scholar 

  • Dimitrijevic, M. D. (1973). Geology of Kerman region. Geological Survey of Iran. Report YU/52.

  • Ducart, D. F., Crosta, A. P., Souza Filho, C. R., & Coniglio, J. (2006). Alteration mineralogy at the Cerro La Mina epithermal prospect, Patagonia, Argentina: Field mapping, short-wave infrared spectroscopy, and ASTER images. Economic Geology, 101, 981–996.

    Article  Google Scholar 

  • Evertz, C. J. G., & Mandelbrot, B. B. (1992). Multifractal measures. Appendix B. In H.-O. Peitgen, H. Jurgens, & D. Saupe (Eds.), Chaos and fractals (pp. 922–953). New York: Springer.

  • Feder, J. (1988). Fractals. New York: Plenum Press.

    Book  Google Scholar 

  • Fowler, A. D., & Roach, D. (1992). Dimensionality analysis of time-series data: Nonlinear methods. Computers & Geosciences, 19(10), 41–52.

    Google Scholar 

  • Galvao, L. S., Almeida-Filho, R., & Vitorello, Í. (2005). Spectral discrimination of hydrothermally altered materials using ASTER short-wave infrared bands: Evaluation in a tropical savannah environment. International journal of Applied Earth Observation, 7(2), 107–114.

    Article  Google Scholar 

  • Geological Survey of Iran (GSI). (1973). Exploration for ore deposit in Kerman Region. Geological Survey of Iran. Report Yu/53.

  • Goncalves, M. A., Mateus, A., & Oliveira, V. (2001). Geochemical anomaly separation by multifractal modeling. Journal of Geochemical Exploration, 72(2), 91–114.

    Article  Google Scholar 

  • Goncalves, M. A., Vairinho, M., & Oliveira, V. (1998). Study of geochemical anomalies in Mombeja area using a multifractal methodology and geostatistics. In A. Buccianti, G. Nardi, & R. Potenza (Eds.), Proceedings of International Association for Mathematical Geology Meeting (Vol. 2, pp. 590–595), 6–9 October, Ischia, Italy.

  • Grujicic, B., & Volickovic, S. (1991). Copper deposit Darrehzar mineral inventories computation. National Iranian Copper Industries, Exploration Department, Internal Report.

  • Honarmand, M., Ranjbar, H., & Moezifar, Z. (2002). Integration and analysis of Airborne geophysical and remote sensing data of Sar Cheshmeh area, using directed principal component analysis. Exploration and Mining Geology, 11(1–4), 43–48.

    Article  Google Scholar 

  • Honarmand, M., Ranjbar, H., & Shahabpour, J. (2011). Application of spectral analysis in mapping hydrothermal alteration of the Northwestern Part of the Kerman Cenozoic Magmatic Arc, Iran. Journal of Sciences, Islamic Republic of Iran, 22(3), 221–238.

    Google Scholar 

  • Honarmand, M., Ranjbar, H., & Shahabpour, J. (2012). Application of Principal Component Analysis and Spectral Angle Mapper in the Mapping of Hydrothermal Alteration in the Jebal–Barez Area, Southeastern Iran. Resource Geology, 62(2), 119–139.

    Article  Google Scholar 

  • Honarmand, M., Ranjbar, H., & Shahabpour, J. (2013). Combined use of ASTER and ALI data for hydrothermal alteration mapping in the northwestern part of the Kerman magmatic arc, Iran. International Journal of Remote Sensing, 34(6), 2023–2046.

    Article  Google Scholar 

  • Hubbard, B. E., & Crowley, J. K. (2005). Mineral mapping on the Chilean–Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sensing of Environment, 99(1), 173–186.

    Article  Google Scholar 

  • Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3), 501–513.

    Article  Google Scholar 

  • Hunt, G. R., & Ashley, R. P. (1979). Spectra of altered rocks in the visible and near infrared. Economic Geology, 74(7), 1613–1629.

    Article  Google Scholar 

  • Iwasaki, A., & Tonooka, H. (2005). Validation of crosstalk correction algorithm for ASTER/SWIR. IEEE Transactions on Geoscience and Remote Sensing, 43(12), 2747–2751.

    Article  Google Scholar 

  • Kaufmann, H. (1988). Mineral exploration along the Aquaba-levant structure by use of TM data, concepts, processing and results. International Journal of Remote Sensing, 9(10–11), 1639–1658.

    Article  Google Scholar 

  • Li, C. J., Ma, T. H., & Shi, J. F. (2003). Application of a fractal method relating concentration and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77(2), 167–175.

    Article  Google Scholar 

  • Loughlin, W. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), 1163–1169.

    Google Scholar 

  • Mandelbrot, B. B. (1974). Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. Journal of Fluid Mechanics, 62(2), 331–358.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1982). The fractal geometry of nature. New York: Freeman.

    Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature (updated and augmented). New York: Freeman.

    Google Scholar 

  • Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic and argillic altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2(3), 161–186.

    Article  Google Scholar 

  • Matthew, M. W., Adler-Golden, S. M., Berk, A., Richtsmeier, S. C., Levine, R. Y., Bernstein, L. S., Acharya, P. K., Anderson, G. P., Felde, G. W., Hoke, M. P., Ratkowski, A., Burke, H.H., Kaiser, R. D., & Miller, D. P. (2000). Status of Atmospheric Correction Using a MODTRAN4-based Algorithm. In Proceedings of Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery (Vol. 4049, pp. 199–207). Orlando, FL: The International Society for Optical Engineering.

  • Moore, F., Rastmanesh, F., Asadi, H., & Modabberi, S. (2008). Mapping mineralogical alteration using principal component analysis and matched filter processing in the Takab area, northwest Iran, from ASTER data. International Journal of Remote Sensing, 29(10), 2851–2867.

    Article  Google Scholar 

  • Nedimovic, R. (1973). Exploration for ore deposits in Kerman region. Geological Survey of Iran publication, Tehran. Report No. 53.

  • Panahi, A., Cheng, Q., & Bonham-Carter, G. F. (2004). Modeling lake sediment geochemical distribution using principal component, indicator kriging and multifractal power-spectrum analysis: a case study from Gowganda, Ontario. Geochemistry: Exploration, Environment, Analysis, 4(1), 59–70.

    Article  Google Scholar 

  • Raines, G. L. (2008). Are fractal dimensions of the spatial distribution of mineral deposits meaningful? Natural Resources Research, 17, 87–97.

    Article  Google Scholar 

  • Ranjbar, H. (1996). An integrated study of remote sensing, geophysical and geochemical params in exploration for copper mineralization in the Pariz area, Kerman Province, Iran, with reference to GIS application. PhD thesis (unpublished), University of Delhi.

  • Ranjbar, H. (1997). Lithogeochemical patterns associated with the Darrehzar porphyry Cu deposit, Pariz area, Iran. CIM Bulletin, 90(1014), 85–90.

    Google Scholar 

  • Ranjbar, H., Hassanzadeh, H., Torabi, M., & Ilaghi, O. (2001). Integration and analysis of airborne geophysical data of the Darrehzar area, Kerman Province, Iran, using principal component analysis. Journal of applied geophysics, 48(1), 33–41.

    Article  Google Scholar 

  • Ranjbar, H., & Honarmand, M. (2004). Integration and analysis of airborne geophysical and ETM+ data for exploration of porphyry type deposits in the Central Iranian Volcanic Belt, using fuzzy classification. International Journal of Remote Sensing, 25(21), 4729–4741.

    Article  Google Scholar 

  • Ranjbar, H., Masoumi, F., & Carranza, E. J. M. (2011). Evaluation of geophysics and spaceborne multispectral data for alteration mapping in the Sar Cheshmeh Mining Area, Iran. International Journal of Remote Sensing, 32(12), 3309–3327.

    Article  Google Scholar 

  • Roach, D., & Fowler, D. (1993). Dimensionality analysis of patterns: Fractal measurements. Computers & Geosciences, 19(6), 849–869.

    Article  Google Scholar 

  • Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the Mountain Pass, California, area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84(3), 350–366.

    Article  Google Scholar 

  • Rowan, L. C., Mars, J. C., & Simpson, C. J. (2005). Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sensing of Environment, 99(1), 105–126.

    Article  Google Scholar 

  • Rowan, L. C., Schmidt, R. G., & Mars, J. C. (2006). Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 104(1), 74–87.

    Article  Google Scholar 

  • Ruiz-Armenta, J. R., & Prol-Ledesma, R. M. (1998). Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper images of central Mexico. International Journal of Remote Sensing, 19(10), 1981–2000.

    Article  Google Scholar 

  • Scholz, C. H., & Mandelbrot, B. B. (Eds.) (1989). Fractals in Geophysics. Basel: Birkhäuser Verlag.

  • Shafiei, B., Haschke, M., & Shahabpour, J. (2009). Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(3), 265–283.

    Article  Google Scholar 

  • Shahabpour, J. (1982). Aspects of alteration and mineralization at the Sar Cheshmeh copper–molybdenum deposit, Kerman, Iran. PhD thesis (unpublished), University of Leeds.

  • Sim, B. L., Agterberg, F. P., & Beaudry, C. (1998). Determining the cut-off between background and anomalous metal concentration in lake sediments for the Frotete area, Quebec, using multifractal methods. In A. Buccianti, G. Nardi, & R. Potenza (Eds.), Proceedings of International Association for Mathematical Geology Meeting (Vol. 2, pp. 612–617), 6–9 October, Ischia, Italy.

  • Stanley, H., & Meakin, P. (1988). Multifractal phenomena in physics and chemistry. Nature, 335(6189), 405–409.

    Article  Google Scholar 

  • Tangestani, M. H., Mazhari, N., Agar, B., & Moore, F. (2008). Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi arid area, northern Shahr-e-Babak, SE Iran. International Journal of Remote Sensing, 29(10), 2833–2850.

    Article  Google Scholar 

  • Tangestani, M. H., & Moore, F. (2001). Comparison of three principal component analysis techniques to porphyry copper alteration mapping a case study in Meiduk area, Kerman, Iran. Canadian Journal of Remote Sensing, 27(2), 176–182.

    Google Scholar 

  • Turcotte, D. L. (1986). A fractal approach to the relationship between ore and tonnage. Economic Geology, 81(6), 1528–1532.

    Article  Google Scholar 

  • Turcotte, D. L. (1997). Fractals and chaos in Geology and Geophysics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Turcotte, D. L. (2002). Fractals in petrology. Lithos, 65(3–4), 261–271.

    Article  Google Scholar 

  • Wang, Q. F., Deng, J., Liu, H., Yang, L. Q., Wan, L., & Zhang, R. Z. (2010). Fractal models for ore reserve estimation. Ore Geology Reviews, 37(1), 2–14.

    Article  Google Scholar 

  • Wang, Q. F., Deng, J., Wan, L., Zhao, J., Gong, Q. J., Yang, L. Q., et al. (2008). Multifractal analysis of the element distribution in skarn-type deposits in Shizishan Orefield in Tongling area, Anhui province, China. Acta Geologica Sinica, 82(4), 896–905.

    Google Scholar 

  • Wang, X. Q., Zhang, Q., & Zhou, G. H. (2007). National-scale geochemical mapping projects in China. Geostandard and Geoanalytical Research, 31(4), 311–320.

    Article  Google Scholar 

  • Woronow, A. (1981). Morphometric consistency with the Hausdorff-Besicovich dimension. Journal of the International Association for Mathematical Geology, 13(3), 201–216.

    Article  Google Scholar 

  • Xu, Y., & Cheng, Q. (2001). A fractal filtering technique for processing regional geochemical maps for mineral exploration. Geochemistry: Exploration, environment, analysis, 1(2), 147–156.

    Article  Google Scholar 

  • Zuo, R. (2011a). Decomposing of mixed pattern of arsenic using fractal model in Gangdese Belt, Tibet, China. Applied Geochemistry, 26, S271–S273.

    Article  Google Scholar 

  • Zuo, R. (2011b). Regional exploration targeting model for Gangdese porphyry copper deposits. Resource Geology, 61(3), 296–303.

    Article  Google Scholar 

  • Zuo, R., & Xia, Q. (2009). Application fractal and multifractal methods to mapping prospectivity for metamorphosed sedimentary iron deposits using stream sediment geochemical data in eastern Hebei province, China. Geochimica et Cosmochimica Acta, 73, A1540.

    Google Scholar 

Download references

Acknowledgments

The comments and suggestions by the reviewers of the journal, especially by Prof. John Carranza, have greatly improved the quality of the manuscript. We thank the National Iranian Copper Industries Company for assisting with logistics during fieldwork and when collecting samples. Institute of science and high technology and environmental sciences, graduate university of advanced technology provided the spectroradiometer for spectra measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojjatollah Ranjbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahriari, H., Ranjbar, H. & Honarmand, M. Image Segmentation for Hydrothermal Alteration Mapping Using PCA and Concentration–Area Fractal Model. Nat Resour Res 22, 191–206 (2013). https://doi.org/10.1007/s11053-013-9211-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-013-9211-y

Keywords

Navigation