Potential Use of Remote Sensing Techniques for Exploration of Iron Deposits in Western Sahara and Southwest of Algeria

Abstract

At present, Western Sahara is politically one of the most sensitive areas of the World. Its economic development could be achieved through the exploitation of mineral resources that can be found in the almost unexplored area administrated by the Saharawi Arab Democratic Republic. In this paper, we describe applications of known and cost-effective remote sensing techniques to detect and map areas containing mineral deposits, through the enhancement of Landsat ETM+ imageries. Several image processing techniques (false color composite, band ratioing, and principal component analysis) were used to highlight the presence of iron deposits. Two test areas were selected, one in Western Sahara and another one in Algeria. The occurrence of iron deposits in these test areas was assured using literature data for the Algerian test site and through a field campaign for the Western Sahara. There is good agreement between the ground truth data and the results obtained by the enhancements of the satellite images. Landsat images can be downloaded free of charge and their enhancements does not need expensive hardware or software tools. Therefore this technology could be transferred to the Saharawi technicians, enabling them to explore and manage the mineral resources of their own country independently.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Abrams, M. J., Rothery, D. A., & Pontual, A. (1988). Mapping in the Oman ophiolite using enhanced Landsat Thematic Mapper images. Tectonophysics, 151, 387–401.

    Article  Google Scholar 

  2. Al Rawashdeh, S., Saleh, B., & Hamzah, M. (2006). The use of remote sensing technology in geological investigation and mineral detection in El Azraq-Jordan. Cybergeo: European Journal of Geography, Systèmes, Modéllisation, Géostatistiques. doi:10.4000/cybergeo.2856. http://cybergeo.revues.org/2856.

  3. Alessandro, V., Pieruccini, U., Pranzini, E., Righini, G., & Salvestrini, L. (1997). Elaborazione ed interpretazione di immagini Landsat TM per la discriminazione litologica in un area marginale dello “Zaire Craton” in Angola. Rivista Italiana di Telerilevamento., 9, 43–52.

  4. Alvarez Gila, O. (2011). Western Sahara: Migration, exile and environment. International Migration, 49, 146–163.

    Article  Google Scholar 

  5. Aydal, D., Arda, E., & Dumanliar, Ö. (2007). Application of the Crosta technique for alteration mapping of granitoidic rocks using ETM+ data: Case study from eastern Tauride belt (SE Turkey). International Journal of Remote Sensing, 28, 3895–3913.

    Article  Google Scholar 

  6. Barale, V., & Gade, M. (Eds.). (2008). Remote sensing of the European Seas. Heidelberg: Springer.

    Google Scholar 

  7. Brownfield, M. E., & Charpentier, R. R. (2006). Geology and total petroleum systems of the Gulf of Guinea Province of West Africa. U.S. Geological Survey Bulletin. 2207-C.

  8. Carranza, E. J. M., & Hale, M. (2002). Mineral imaging with Landsat Thematic Mapper data for hydrothermal alteration mapping in heavily vegetated terrane. International Journal of Remote Sensing, 23(22), 4827–4852.

    Article  Google Scholar 

  9. Ciampalini, A., Garfagnoli, F., Antonielli, B., Del Ventisette, C., & Moretti, S. (2012a). Photo-lithological map of the southern flank of the Tindouf Basin (Western Sahara). Journal of Maps, 8(4), 453–464.

    Article  Google Scholar 

  10. Ciampalini, A., Garfagnoli, F., Antonielli, B., Moretti, S., & Righini, G. (2012b). Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa. Arabian Journal of Geosciences,. doi:10.1007/s12517-012-0725-0.

    Google Scholar 

  11. Daneshfar, B., Desrochers, A., & Budkewitsch, P. (2006). Mineral-potential mapping for MVT deposits with limited data sets using landsat data and geological evidence in the Borden Basin, Northern Baffin Island, Nanuvut, Canada. Natural Resources Research, 15(3), 129–149.

    Article  Google Scholar 

  12. Davison, I. (2005). Central Atlantic margin basins of North West Africa; Geology and hydrocarbon potential (Morocco to Guinea). Journal of African Earth Sciences, 43, 254–274.

    Article  Google Scholar 

  13. Dehnavi, A. G., Sarikhani, R., & Nagaraju, D. (2010). Image processing and analysis of mapping alteration zones in environmental research, East of Kurdistan, Iran. World Applied Sciences Journal, 11, 278–283.

    Google Scholar 

  14. Dogan, H. M. (2008). Applications of remote sensing and Geographic Information Systems to assess ferrous minerals and iron oxide of Tokat province in Turkey. International Journal of Remote Sensing, 29, 221–233.

    Article  Google Scholar 

  15. Dogan, H. M. (2009). Mineral composite assessment of Kelkit River Basin in Turkey by means of remote sensing. Journal of Earth System Science, 118, 701–710.

    Article  Google Scholar 

  16. Drury, S. A. (1993). Image interpretation in geology (2nd ed.). London: Chapman & Hall.

    Google Scholar 

  17. Elsayed Zeinelabdein, K. A., & Albiely, A. I. (2008). Ratio image processing techniques: a prospecting tool for mineral deposits, Red Sea Hills, NE Sudan. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1295–1298.

    Google Scholar 

  18. Fraser, S. J. (1991). Discrimination and identification of ferric oxides using satellite Thematic Mapper data: A Newman case study. International Journal of Remote Sensing, 12(3), 635–641.

    Article  Google Scholar 

  19. Guerrak, S. (1988). Geology of the Early Devonian oolitic iron ore of the Gara Djebilet field, Saharan Platform, Algeria. Ore Geology Review, 3, 333–358.

    Article  Google Scholar 

  20. Guerrak, S. (1991). Paleozoic patterns of oolitic ironstone sedimentation in the Sahara. Journal of African Earth Sciences, 12, 31–39.

    Article  Google Scholar 

  21. Guerrak, S., & Chauvel, J. J. (1985). Les minéralisations ferriferes du Sahara Algérien. Le gisement de fer oolithique de Mecheri Abdelaziz (basin de Tindouf). Mineralium Deposita, 20, 249–259.

    Article  Google Scholar 

  22. Honarmand, M., Ranjbar, H., & Shahabpour, B. (2012). Application of principal component analysis and spectral angle mapper in the mapping of hydrothermal alteration in the Jebal-Barez area, southeastern Iran. Resource Geology, 62(2), 119–139.

    Article  Google Scholar 

  23. Hubbard, B., & Crowley, J. K. (2005). Mineral mapping on the Chilean–Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sensing of Environment, 99, 173–186.

    Article  Google Scholar 

  24. James, H. L., & Van Houten, F. B. (1979). Miocene goethitic and chamositic oolite: Northeastern Colombia. Sedimentology, 26, 125–133.

    Article  Google Scholar 

  25. Kaufmann, H. (1988). Mineral exploration along the Aqaba-Levant Structure by use of TM-data. Concepts, processing and results. International Journal of Remote Sensing, 9, 1639–1658.

    Article  Google Scholar 

  26. Kenea, N. H. (1997). Improved geological mapping using Landsat TM data, Southern Red Sea Hills, Sudan: PC and IHS decorrelation stretching. International Journal of Remote Sensing, 18, 1233–1244.

    Article  Google Scholar 

  27. Kenea, N. H., & Haenisch, H. (1996). Principal component analyses for lithologic and alteration mappings: Examples from the Red Sea Hills, Sudan. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 31, 271–275.

    Google Scholar 

  28. Lahiri-Dutt, K. (2004). Informality in mineral resources management in Asia: Raising questions relating to community economies and sustainable development. Natural Resources Forum, 28, 123–132.

    Article  Google Scholar 

  29. Lambert, I. B. (2001). Mining and sustainable development: Considerations for minerals supply. Natural Resources Forum, 25, 275–284.

    Article  Google Scholar 

  30. Liu, J. G. (2000). Evaluation of Landsat-7 ETM+ panchromatic band for image fusion with multispectral bands. Natural Resources Research, 9, 269–276.

    Article  Google Scholar 

  31. Loughlin, W. P. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering & Remote Sensing, 57, 1163–1169.

    Google Scholar 

  32. Lubeseder, S., Redfern, J., & Boutib, L. (2009). Mixed siliciclastic–carbonate shelf sedimentation—Lower Devonian sequences of the SWAnti-Atlas, Morocco. Sedimentary Geology, 215, 13–32.

    Article  Google Scholar 

  33. Madani, A. A. (2009). Utilization of Landsat ETM+ data for mapping gossans and iron rich zones exposed at Bahrah area, Western Arabian Shield, Saudi Arabia. Journal of King Abdulaziz University: Earth Sciences, 20, 25–49.

    Google Scholar 

  34. Marzano, F. S., & Visconti, G. (Eds.). (2003). Remote sensing of atmosphere and ocean from space: Models, instruments and techniques. New York: Springer.

    Google Scholar 

  35. Patel, N., & Kaushal, B. (2011). Classification of features selected through Optimum Index Factor (OIF) for improving classification accuracy. Journal of Forestry Research, 22, 99–105.

    Article  Google Scholar 

  36. Pazzanita, A. G. (1994). Morocco versus Polisario: A political interpretation. The Journal of Modern African Studies, 32(2), 265–278.

    Article  Google Scholar 

  37. Potrel, A., Pecaut, J., Fanning, C. M., Auvray, B., Burg, J. P., & Caruba, C. (1996). Old terranes (3.5 Ga) in the West African Craton, Mauritania. Journal of Geological Society of London, 153, 507–510.

    Article  Google Scholar 

  38. Rajendran, S., Thirunavukkarasu, A., Balamurugan, G., & Shankar, K. (2011). Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data. Journal of Asian Earth Sciences, 41, 99–106.

    Article  Google Scholar 

  39. Rajesh, H. M. (2008). Mapping Proterozoic unconformity-related uranium deposits in the Rockhole area, Northern Territory, Australia using Landsat ETM+. Ore Geology Reviews, 33, 382–396.

    Article  Google Scholar 

  40. Ramadan, T. M., & Kotny, A. (2004). Mineralogical and structural characterization of alteration zones detected by orbital remote sensing at Shalatein District, SE Desert, Egypt. Journal of African Earth Sciences, 40, 89–99.

    Article  Google Scholar 

  41. Ranjbar, H., Masoumi, F., & Carranza, E. J. M. (2011). Evaluation of geophysics and spaceborne multispectral data for alteration mapping in the Sar Chesmeh mining area, Iran. International Journal of Remote Sensing, 32, 3309–3327.

    Article  Google Scholar 

  42. Richard, J. P. (2005). Challenges for sustainable mineral resources development in the 21st Century. Resources Geology, 55(2), 131–137.

    Article  Google Scholar 

  43. Rokos, D., Argialas, D., Mavrantza, R., St. Seymour, K., Vamvoukakis, C., Lamera, S., et al. (2000). Structural analysis for gold mineralization using remote sensing and geochemical techniques in a GIS environment: Island of Lesvos, Hellas. Natural Resources Research, 9, 277–293.

    Article  Google Scholar 

  44. Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, 350–366.

    Article  Google Scholar 

  45. Saadi, M., Hilali, E. A., Bensaïd, M., Boudda, A., & Dahmani, M. (1985). Carte Géologique du Maroc, echelle 1/1000000, Edition du Service Géologique du Maroc, Notes et Mémoires n° 260.

  46. Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157–183.

    Article  Google Scholar 

  47. Sachse, V. F., Littke, R., Heim, S., Kluth, O., Schober, J., Boutib, L., et al. (2011). Petroleum source rocks of the Tafaya Basin and adjacent areas, Morocco. Organic Geochemistry, 42, 209–227.

    Article  Google Scholar 

  48. Shalaby, M. H., Bishta, A. Z., Roz, M. E., & Zalaky, M. A. (2010). Integration of geologic and remote sensing studies for the discovery of uranium mineralization in some granite plutons, Eastern Desert, Egypt. Journal of King Abdulaziz University: Earth Sciences, 21, 1–25.

    Article  Google Scholar 

  49. Shelley, T. (2006). What future for Africa’s last colony?. London: Zed Books.

    Google Scholar 

  50. Siljestrom, P. A., Moreno, A., Vikgren, K., & Caceres, L. M. (1997). Technical note: The application of selective principal component analysis (SPCA) to Thematic Mapper (TM) image for the recognition of geomorphologic features configuration. International Journal of Remote Sensing, 18, 3843–3852.

    Article  Google Scholar 

  51. Skinner, B. J. (2000). Keynote presentation on 31st International Geological Congress, Rio de Janeiro. August 2000.

  52. Snow, G., & Mackenzie, B. W. (1981). The environment of exploration: Economic, organizational and social constraints. In B. J. Skinner (Ed.), Economic Geology: Seventy-fifth anniversary volume (pp. 871–896). Littleton: Society of Economic Geologists.

    Google Scholar 

  53. Tangestani, M. H., & Moore, F. (2000). Iron oxides and hydroxyl enhancement using the Crosta method: A case study from the Zagros Belt, Fars Province, Iran. International Journal of Applied Earth Observation and Geoinformation, 2, 140–146.

    Article  Google Scholar 

  54. Tilton, J. E. (2000). Mining and public policy: An alternative view. Natural Resources Forum, 24, 49–52.

    Article  Google Scholar 

  55. Upadhyay, R. K., Venkatesh, A. S., & Roy, S. (2010). Mineralogical characteristics of iron ores in Joda and Khondbond areas in Eastern India with implications on beneficiation. Resources Geology, 60, 203–211.

    Article  Google Scholar 

  56. Van der Meer, F. D., van der Werf, H. M. A., van Ruitenbeek, F. J. A., Hecker, C. A., Bakker, W. H., Noomen, M. F., et al. (2012). Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14, 112–128.

    Article  Google Scholar 

  57. Villeneuve, M. (2005). Paleozoic basins in West Africa and Mauritanide thrust belt. Journal of African Earth Sciences, 43, 166–195.

    Article  Google Scholar 

  58. Zumsprekel, H., & Prinz, T. (2000). Computer-enhanced multispectral remote sensing data: A useful tool for the geological mapping of Archean terrains in (semi)arid environments. Computer & Geosciences, 26, 87–100.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financed by Autostrade per L’Italia S.p.a. The authors are grateful to the staff of the SADR Government and to Fiorella Bendoni from NGO Ban Slout Larbi for providing general support during the field work. We are very grateful to H.M Rajesh, to an anonymous reviewer and to the Editor-in-Chief J. Carranza for making many helpful suggestions that improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Ciampalini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ciampalini, A., Garfagnoli, F., Del Ventisette, C. et al. Potential Use of Remote Sensing Techniques for Exploration of Iron Deposits in Western Sahara and Southwest of Algeria. Nat Resour Res 22, 179–190 (2013). https://doi.org/10.1007/s11053-013-9209-5

Download citation

Keywords

  • Mineral detection
  • iron exploitation
  • Western Sahara
  • developing country