Skip to main content
Log in

Simultaneous determination of uric acid and xanthine in human urine using differential pulse voltammetry with ZnMn2O4 modified electrode

  • Research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This paper demonstrates the preparation of ZnMn2O4 nanoparticles through thermal hydrolysis in different solvents, such as isopropanol, ethylene glycol, glycerol, and water, combined with pyrolysis. The obtained samples were characterised by using X-ray diffraction (XRD), infrared spectroscopy (FT‒IR), scanning electron microscopy (SEM), energy-dispersive X-ray mapping, nitrogen adsorption/desorption isotherms, and a vibrating sample magnetometer. The electrocatalytic activity of ZnMn2O4 nanoparticles was investigated toward the oxidation of uric acid (UA) and xanthine (XA). The ZnMn2O4-nanoparticle-modified electrode not only enhances the oxidation currents of the two purine derivatives but also successfully separates the voltammetric signals of the analytes in their binary mixture and, hence, is employed for their simultaneous determination. The factors affecting the analysis, such as pH, scan rate, linear range, detection limit, reproducibility, and interferents, were also investigated. The results show that the UA and XA limits of detection are as low as 0.55 and 1.28 µM, and the modified electrodes have satisfactory repeatability and reproducibility. The practical application of the modified electrode was demonstrated by simultaneously determining the concentrations of UA and XA in urine samples with exceptional accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Yamamoto T, Moriwaki Y, Takahashi S (2005) Effect of ethanol on the metabolism of purine bases (hypoxanthine, xanthine, and uric acid). Clin Chim Acta 356:35–57. https://doi.org/10.1016/j.cccn.2005.01.024

    Article  CAS  PubMed  Google Scholar 

  2. Li D, Zhuang S, Peng Y, Tan Y, Hong H, Luo Y (2022) Mechanism of inosine monophosphate degradation by specific spoilage organism from grass carp in fish juice system. Foods 11:2672. https://doi.org/10.3390/foods11172672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Song D, Chen Q, Zhai C, Tao H, Zhang L, Jia T, Zhiwang Lu, Sun W, Yuan P, Zhu B (2022) Label-free ZnIn2S4/UiO-66-NH2 modified glassy carbon electrode for electrochemically assessing fish freshness by monitoring xanthine and hypoxanthine. Chemosensors 10(5):158. https://doi.org/10.3390/chemosensors10050158

    Article  CAS  Google Scholar 

  4. Rock KL, Kataoka H, Lai J-J (2013) Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol 9(1):13–23. https://doi.org/10.1038/nrrheum.2012.143

    Article  CAS  PubMed  Google Scholar 

  5. Pleskacova A, Brejcha S, Pacal L et al (2017) Simultaneous determination of uric acid, xanthine and hypoxanthine in human plasma and serum by HPLC–UV: Uric acid metabolism tracking. Chromatographia 80:529–536

    Article  CAS  Google Scholar 

  6. PalrajKalimuthu S, John A (2010) Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode. Anal Chim Acta 80(5):1670–1691. https://doi.org/10.1016/j.talanta.2009.10.007

    Article  CAS  Google Scholar 

  7. Hossein M, Mohammad G, Mashhadizadeh H, ZahraNorouzi HS (2022) Simultaneous electrochemical detection of uric acid and xanthine based on electrodeposited B, N co-doped reduced graphene oxide, gold nanoparticles and electropolymerized poly (L-cysteine) gradually modified electrode platform. Microchem J 175:107213. https://doi.org/10.1016/j.microc.2022.107213

    Article  CAS  Google Scholar 

  8. Wang Y, Tong L-l (2010) Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode. Sensors Actuators B Chem 150:43–49. https://doi.org/10.1016/j.snb.2010.07.044

    Article  CAS  Google Scholar 

  9. Liu G, Ma W, Luo Y, Sun D-m, Shao S (2014) Simultaneous determination of uric acid and xanthine using a poly(methylene blue) and electrochemically reduced graphene oxide composite film modified electrode. J Anal Methods Chem 2014. Article ID 984314. https://doi.org/10.1155/2014/984314

  10. Zinellu A, Sotgia S, Deiana L, Carru C (2011) Field-amplified sample injection combined with pressure-assisted capillary electrophoresis UV detection for the simultaneous analysis of allantoin, uric acid, and malondialdehyde in human plasm. Anal Bioanal Chem 399:2855–2861. https://doi.org/10.1007/s00216-010-4648-x

    Article  CAS  PubMed  Google Scholar 

  11. Zhao S, Wang J, Ye F, Liu Y-M (2008) Determination of uric acid in human urine and serum by capillary electrophoresis with chemiluminescence detection. Anal Biochem 378(2):127–131. https://doi.org/10.1016/j.ab.2008.04.014

    Article  CAS  PubMed  Google Scholar 

  12. Wu M, Zhang W, Shen X, Wang W (2021) Simultaneous determination of purines and uric acid in chinese chicken broth using TFA/FA hydrolysis coupled with HPLC-VWD. Foods 10:2814. https://doi.org/10.3390/foods10112814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Z, Li T, Wang E (1995) Simultaneous determination of guanine, uric acid, hypoxanthine and xanthine in human plasma by reversed–phase high–performance liquid chromatography with amperometric detection. Analyst 120:2181–2184. https://doi.org/10.1039/an9952002181

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Khorasani Motlagh M, Noroozifar M, Kerman K, Kraatz H-B (2021) Ferrocene–functionalized multiwalled carbon nanotubes for the simultaneous determination of dopamine, uric acid, and xanthine. Eur J Inorg Chem 2022(3). e202100907. https://doi.org/10.1002/ejic.202100907

  15. Zhu D, Ma H, Pang H, Tan L, Jiao J, Chen T (2018) Facile fabrication of a non-enzymatic nanocomposite of heteropolyacids and CeO2@Pt alloy nanoparticles doped reduced graphene oxide and its application towards the simultaneous determination of xanthine and uric acid. Electrochim Acta 266:54–65. https://doi.org/10.1016/j.electacta.2018.01.185

    Article  CAS  Google Scholar 

  16. Kanakaraj A, Radha N, Halanur M, Manohara MRN, Dibyendu M, Debasis G, Sanna KN (2020) One-step green route synthesis of spinel ZnMn2O4 nanoparticles decorated on MWCNTs as a novel electrode material for supercapacitor. Mater Sci Eng: B 252:114481. https://doi.org/10.1016/j.mseb.2019.114481

    Article  CAS  Google Scholar 

  17. Lyu L, Kim CW, Seong K-D, Kang J, ShudeLiu YY, Piao Y (2022) Defect engineering induced heterostructure of Zn-birnessite@spinel ZnMn2O4 nanocrystal for flexible asymmetric supercapacitor. Chem Eng J 430:133115. https://doi.org/10.1016/j.cej.2021.133115

    Article  CAS  Google Scholar 

  18. Deng S, Tie Z, Yue F, Cao H, Yao M, Niu Z (2022) Rational design of ZnMn2O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries. Angew Chem 134(12):e202115877. https://doi.org/10.1002/anie.202115877

  19. Li Y, Tang Li, Deng D, Ye J, Zhenyu Wu, Wang J, Luo L (2019) A novel non-enzymatic H2O2 sensor using ZnMn2O4 microspheres modified glassy carbon electrode. Colloids Surf B: Biointerfaces 179:293–298. https://doi.org/10.1016/j.colsurfb.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  20. Venkatesh K, Muthukutty B, Chen S-M, Karuppiah C, Amanulla B, Yang C-C, Ramaraj SK (2021) Nanomolar level detection of non-steroidal antiandrogen drug flutamide based on ZnMn2O4 nanoparticles decorated porous reduced graphene oxide nanocomposite electrode. J Hazard Mater 405:124096

    Article  CAS  PubMed  Google Scholar 

  21. Britton HTK, Robinson RA (1931). J Chem Soc 0(0):1456–1462. https://doi.org/10.1039/JR9310001456

  22. Ni T, Zhong Y, Sunarso J, Zhou W, Cai R, Shao Z (2016) Optimal hydrothermal synthesis of hierarchical porous ZnMn2O4 microspheres with more porous core for improved lithium storage performance. Electrochim Acta 207:58–65. https://doi.org/10.1016/j.electacta.2016.04.098

    Article  CAS  Google Scholar 

  23. Feng L, Xuan Z, Zhao H, Bai Y, Guo J, Chang-wei Su, Chen X (2014) MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res Lett 9:290. https://doi.org/10.1186/1556-276X-9-290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nassar MY, El-Moety EA, El-Shahat MF (2017) Synthesis and characterization of a ZnMnO4 nanostructure as a chemical nanosensor: a facile and new approach for colorimetric determination of omeprazole and lansoprazole drugs. RSC Adv 7:43798–43811

    Article  CAS  Google Scholar 

  25. Kooli, Martın C, Rives V (1997) FT-IR spectroscopy study of surface acidity and 2-propanol decomposition on mixed oxides obtained upon calcination of layered double hydroxides. Langmuir 13:2303–2306. https://doi.org/10.1021/la960583j

    Article  CAS  Google Scholar 

  26. Ameri SSH, Davarani HR, Moazami HD (2017) Cathodic electrosynthesis of ZnMn2O4/Mn3O4 composite nanostructures for high performance supercapacitor applications. J Alloy Compd 720:408–416. https://doi.org/10.1016/j.jallcom.2017.05.271

    Article  CAS  Google Scholar 

  27. Ivanovski V, Petruševski VM, Gunde MK (2005) The IR reflectance spectra of the ν3(SO42−) and ν4(SO42−) band regions of some Tutton salts using polarized radiation: testing the model dielectric function. Spectrochim Acta A 61:67–76. https://doi.org/10.1016/j.saa.2004.03.034

    Article  CAS  Google Scholar 

  28. Maoqin Q, Zhangxian C, Zeheng Y, Wenming L, Yuan T, Weixin Z, Yishu X, Hansong C (2018) ZnMn2O4 nanorods: an effective Fenton-like heterogeneous catalyst with t2g3eg1 electronic configuration. Catal Sci Technol 8(10):2557–2066. https://doi.org/10.1039/C8CY00436F

    Article  Google Scholar 

  29. Houshang B, Hamid H, Azad N, Jamil M (2018) Facile synthesis of ZnMn2O4 nanosheets via cathodic electrodeposition: characterization and supercapacitor behavior studies. Springer Nat 25:275–285. https://doi.org/10.1007/s11581-018-2565-8

    Article  CAS  Google Scholar 

  30. Kurian J, Mathew MJ (2018) Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrogenthermal/solvothermal method. J Magn Magn Mater 451:121–130. https://doi.org/10.1016/j.jmmm.2017.10.124

    Article  CAS  Google Scholar 

  31. McCrudden FH (1905) Uric Acid: The chemistry, physiology and pathology of uric acid and the physiologically important purin bodies, with a discussion of the metabolism in gout. Hoeber Publisher, New York, Paul B. https://doi.org/10.1001/jama.1906.02510390064027

    Book  Google Scholar 

  32. Kulikowska E, Kierdaszuk B, Shugar D (2004) Xanthine, xanthosine and its nucleotides: solution structures of neutral and ionic forms, and relevance to substrate properties in various enzyme systems and metabolic pathways. Acta Biochim Pol 51:493–531. https://doi.org/10.18388/abp.2004_3587

    Article  CAS  PubMed  Google Scholar 

  33. Jafar S, Mohammad H, Nasrin S, Maryam KJ, Jalil VG, Mehdi Y, Abolghasem J (2016) A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modifified glassy carbon electrode. Mater Sci Eng: C 61:638–650. https://doi.org/10.1016/j.msec.2016.01.003

    Article  CAS  Google Scholar 

  34. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101(1):19–28. https://doi.org/10.1016/j.msec.2016.01.003

    Article  CAS  Google Scholar 

  35. Moses AJ, Jiles D (2009) Influence of vacuum sintering on microstructure and magnetic properties of magnetostrictive cobalt ferrite. J Magn Magn Mater 321(17):2528–2532. https://doi.org/10.1016/j.jmmm.2009.03.021

    Article  CAS  Google Scholar 

  36. Kalimuthu P, John SA (2010) Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode. Talanta 80(5):1686–1691. https://doi.org/10.1016/j.talanta.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  37. Raj MA, John SA (2013) Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Anal Chim Acta 771:14–20. https://doi.org/10.1016/j.aca.2013.02.017

    Article  CAS  PubMed  Google Scholar 

  38. Soltani N, Tavakkoli N, Mosavimanesh ZS, Davar F (2018) Electrochemical determination of naproxen in the presence of acetaminophen using a carbon paste electrode modified with activated carbon nanoparticles. C R Chimie 21(1):54–60. https://doi.org/10.1016/j.crci.2017.11.007

    Article  CAS  Google Scholar 

  39. Man NQ, Tu NTT, Vu HXA et al (2023) Simultaneous determination of uric acid, xanthine, and caffeine in human urine samples using nickel ferrite/reduced graphene oxide modified electrode. J Mater Sci: Mater Electron 34:59. https://doi.org/10.1007/s10854-022-09449-2

    Article  CAS  Google Scholar 

  40. Luyen ND, Trang HT, Khang PY et al (2024) Simultaneous determination of Pb(II) and Cd(II) by electrochemical method using ZnO/ErGO-modified electrode. J Appl Electrochem 54:917–933. https://doi.org/10.1007/s10800-023-02005-8

    Article  CAS  Google Scholar 

  41. LinLin W, ZhiPeng W, Kaibin T, XiaoZhu Z, Min Z, DaoLi Z, Jingli X (2015) Synthesis of spinel ZnMn2O4 nanoparticle assemblies via a flower-like ZnO precursor route for lithium battery anodes with enhanced electrochemical performance. Int J Electrochem Sci 10:6714–6720. https://doi.org/10.1016/S1452-3981(23)06755-X

    Article  Google Scholar 

  42. Zen J-M, Lai Y-Y, Yang H-H, Kumar AS (2002) Multianalyte sensor for the simultaneous determination of hypoxanthine, xanthine and uric acid based on a preanodized nontronite-coated screen-printed electrode. Sens Actuators B: Chem 84(2–3):237–244. https://doi.org/10.1016/S0925-4005(02)00031-X

    Article  CAS  Google Scholar 

  43. Roohollah TK, Craig EB, Compton RG (2006) Simultaneous determination of uric acid and ascorbic acid using edge plane pyrolytic graphite electrodes. Electroanalysis 18(8):741‒747. https://doi.org/10.1002/elan.200603470

  44. Zhang F, Wang Z, Zhang Y, Zheng Z, Wang C, Du Y, Ye W (2012) Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly (l-arginine)/graphene composite film modified electrode. Talanta 93:320–325. https://doi.org/10.1016/j.talanta.2012.02.041

    Article  CAS  PubMed  Google Scholar 

  45. Isabel T, De Marc L, Van B E (2004) Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC Trends Anal Chem 23(8):535–552. https://doi.org/10.1016/j.trac.2004.04.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.L.M.L , D.M.N and D.T.T.N proposed and supervised the project. D.Q.H., D.M.D,T.N.D, L.V.T.S, T.T.T.T, N.T.T.U conceived and performed the experiments. N.L.M.L and D.Q.K wrote the paper. All the authors contributed to the results analyses, discussions, and have approved the final version of the paper.

Funding

Do Mai Nguyen was funded by the Master, PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), code VINIF.2023.TS.079.

Author information

Authors and Affiliations

Authors

Contributions

N.L.M.L.D.M.D, D.T.T.N proposed and surpevised the project. D.Q.H., D.M.D,T.N.D, L.V.T.S, T.T.T.T, N.T.T.U conceived and performed the experiments. N.L.M.L and D.Q.K wrote the paper. All the authors contributed to the result analyses, discussion and have approved the final version of the paper.

Corresponding authors

Correspondence to Tran Thanh Tam Toan or Dinh Quang Khieu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le My Linh, N., Nhan, D.T.T., Huong, D.Q. et al. Simultaneous determination of uric acid and xanthine in human urine using differential pulse voltammetry with ZnMn2O4 modified electrode. J Nanopart Res 26, 104 (2024). https://doi.org/10.1007/s11051-024-06018-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-06018-y

Keywords

Navigation