Skip to main content
Log in

Facile synthesis of magnetic high-efficiency renewable nanosorbent for recyclable adsorption of Cu2+

  • Research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study focuses on the synthesis and characterization of recyclable nano-adsorbents of magnetic nanocomposites (Fe3O4@ZnO-RGO). The Fe3O4 nanoparticles were used as magnetic responders, ZnO coated on the surface of Fe3O4 not only captured Cu2+ but also prevented the oxidation of Fe3O4, and reduced graphene oxide (RGO) acted as Fe3O4@ZnO carrying platform could effectively adsorb Cu2+. The physical and chemical performance characterization suggested that the nano-adsorbents had stable structure, good hydrophilicity, and magnetic properties. Furthermore, the research results on adsorption performance indicated that the Fe3O4@ZnO-RGO had high adsorption properties for Cu2+, and the adsorption rate could reach more than 98%. The adsorption process conformed to the Langmuir model and second-order adsorption kinetics, and the adsorption of Cu2+ was mainly chemisorption, accompanied by physical adsorption. In addition, because of the special magnetic response performance, Fe3O4@ZnO-RGO could be quickly separated from the solutions for cyclic adsorption so as to avoid secondary pollution. This provided a valuable idea for the effective development of clean and efficient Cu2+ adsorbents, and the Fe3O4@ZnO-RGO had great application potential in the field of Cu2+ wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Khajavian M, Kaviani S, Piyanzina I, Tayurskii DA, Nedopekin OV, Sillanpää M, Vatanpour V (2023) Single and binary heavy metal adsorption using alginic acid structure: experimental and density functional theory investigations. J Water Process Eng 54:103996

    Article  Google Scholar 

  2. Kovár F, Smutná K, HruŠka A, Koutník I, Vráblová M (2023) Adsorption and permeability of heavy metals (Fe, Cu, Pb, Zn, Cr, and Cd) onto the adaxial cuticle of ficus elastica leaf. Hortic-amsterdam Sci 321:112315

    Article  Google Scholar 

  3. Wu Y, Ming J, Zhou W, Xiao N, Cai J (2023) Efficiency and mechanism in preparation and heavy metal cation/anion adsorption of amphoteric adsorbents modified from various plant straws. Total Environ Sci 884:163887

    Article  CAS  Google Scholar 

  4. Bai Q, Huang C, Ma S, Gong B, Ou J (2023) Rapid adsorption and detection of copper ions in water by dual-functional ion-imprinted polymers doping with carbon dots. Sep Purif Technol 315:123666

    Article  CAS  Google Scholar 

  5. Ahadi N, Mobinikhaledi A, Hosseini RM (2023) An application study of MnCoFe2O4@ PEG-4000 (MCF@ PEG-4000) MNPs as a catalyst in the synthesis of hexahydroquinolines and benzopyrans and as an nano-adsorbent for the removal of Cu (II) and Fe (III) ions in aqueous solutions. J Nanopart Res 25(3):46

    Article  CAS  Google Scholar 

  6. Xie LQ, Peng S, Xin YN, Liu B, Jiang XY, Yu JG (2023) Preparation of three-dimensional 2-mercaptothiazoline modified GO aerogel for selective adsorption of Cu2+ in aqueous solution. J Environ Chem Eng 11:110332

    Article  CAS  Google Scholar 

  7. Rong M, Xu X, Wang K, Lu L, Bai Y, Tian Y, Hou Z, Zhao R, Ma Y, Jiang Y (2023) A novel hydroxyapatite-based hollow microsphere nanocomposite for copper ion adsorption. Chem Phys Lett 824:140548

    Article  CAS  Google Scholar 

  8. Shivaraj B, Prabhakara MC, Bhojya HS, Indrajith N, Viswanath R, Shashank M, Kumara BES (2021) Optical, bio-sensing, and antibacterial studies on ni-doped ZnO nanorods, fabricated by chemical co-precipitation method. Inorg Chem Commun 134:109049

    Article  CAS  Google Scholar 

  9. Abdelfattah A, Ramadan H, Elsamahy T, Eltawab R, Mostafa S, Zhou XT, Cheng L (2023) Multifaced features and sustainability of using pure oxygen in biological wastewater treatment: a review. J Water Process Eng 53:103883

    Article  Google Scholar 

  10. He X, Yang X, Zhao M, Zhang R, Jing YY, Zhang L, He YL, Wu HS, Jia J (2023) Revealing promotion of interfacial Pt–O–Fe oxygen bridge structure in PtFe/graphene synthesized by a four-electrode electrochemical system on water splitting. J Hydrogen Energy 48(98):38728–38741

    Article  Google Scholar 

  11. Fu C, Shi N, Yang L, Zhang H, Zhang P (2023) A combined adsorption and photocatalytic regeneration process for crystal violet wastewater treatment with KBiO3. J Nanopart Res 25(12):249

    Article  CAS  Google Scholar 

  12. Li L, Xi P, Wang X (2023) Luminescent CS-SiO2@TEuTTA membrane for simultaneous detection and adsorption of Copper(II) Ions. J Environ Chem Eng 11:109573

    Article  CAS  Google Scholar 

  13. Liu Y, Hu L, Tan B, Li JR, Gao XH, He YN, Du XF, Zhang W, Wang WL (2019) Adsorption behavior of heavy metal ions from aqueous solution onto composite dextran-chitosan macromolecule resin adsorbent. Int J Biol Macromol 141:738–746

    Article  CAS  PubMed  Google Scholar 

  14. Hu W, Zhang S, Zhang W, Wang M, Feng F (2020) Controllable synthesis of gossamer-like Nb2O5-RGO nanocomposite and its application to supercapacitor. J Nanopart Res 22(3):57

    Article  CAS  Google Scholar 

  15. Skrzekut T, Jaworska L, Noga P, Jeleń P, Cempura G (2023) Research on the consolidation and strengthening of Ti6Al4V-GO sinters. J Alloy Compd 958:170435

    Article  CAS  Google Scholar 

  16. Liu Y, Yan W, Zhong Y, Wu Z, Shang S, Wu X, Shen X, Cui S (2022) Synthesis and characterization of amino-grafted attapulgite/graphene oxide nanocomposites and their adsorption for Pb (II) removal. J Nanopart Res 24(2):28

    Article  CAS  Google Scholar 

  17. Wang L, Hu D, Kong X, Liu J, Li X, Zhou K, Zhao H (2018) Chunhua zhou anionic polypeptide poly(γ-glutamic acid)-functionalized magnetic Fe3O4-GO-(o-MWCNTs) hybrid nanocomposite for high-efficiency removal of Cd(II), Cu(II) and Ni(II) heavy metal ions. Chem Eng J 346:38–49

    Article  CAS  Google Scholar 

  18. Li XH, Yang HJ, Ma YX, Li TZ, Meng WL, Zhong XM (2023) A novel PAN/GO electrospun nanocomposite fibrous membranes with rich amino groups for highly efficient adsorption of Au(III). Diam Relat Mater 137:110175

    Article  CAS  Google Scholar 

  19. Thamer A, Faisal A, Abed A, Khalef W (2020) Synthesis of gold-coated branched ZnO nanorods for gas sensor fabrication. J Nanopart Res 22(4):74

    Article  CAS  Google Scholar 

  20. Oyewo OA, Ramaila S, Mavuru L (2023) Adsorption and photocatalytic removal of murexide using ZnO/rGO and ZnO/g-C3N4 composites. Inorg Chem Commun 151:110601

    Article  CAS  Google Scholar 

  21. Ghalavand R, Mokhtary M, Shakeri A, Alizadeh O (2023) Polyacrylamide-grafted zinc oxide (ZnO-g-PAM) nanoparticles as a promising nanofiller for thin-film nanocomposite forward osmosis membranes. J Nanopart Res 25(1):12

    Article  CAS  Google Scholar 

  22. Deng X, Li W, Wang Y, Ding GS (2020) Recognition and separation of enantiomers based on functionalized magnetic nanomaterials. Trac-trend Anal Chem 124:115804

    Article  CAS  Google Scholar 

  23. Eivazzadeh-keihan R, Bahreinizad H, Amiri Z, Aliabadi HAM, Salimi-Bani M, Nakisa A, Davoodi F, Tahmasebi B, Ahmadpour F, Radinekiyan F, Maleki A, Hamblin MR, Mahdavi M, Madanchi H (2021) Functionalized magnetic nanoparticles for the separation and purification of proteins and peptides. Trac-trend Anal Chem 141:116291

    Article  CAS  Google Scholar 

  24. Yang Q, Dong Y, Qiu Y, Yang X, Cao H, Wu Y (2020) Design of functional magnetic nanocomposites for bioseparation. Colloid Surface B 191:111014

    Article  CAS  Google Scholar 

  25. Powell CD, Atkinson AJ, Ma Y, Marcos-Hernandez M, Villagran D, Westerhoff P, Wong MS (2020) Magnetic nanoparticle recovery device (MagNERD) enables application of iron oxide nanoparticles for water treatment. J Nanopart Res 22:1–11

    Article  Google Scholar 

  26. Lozhkomoev AS, Pervikov AV, Kazantsev SO, Sharipova AF, Rodkevich NG, Toropkov NE, Lerner MI (2021) Synthesis of Fe/Fe3O4 core-shell nanoparticles by electrical explosion of the iron wire in an oxygen-containing atmosphere. J Nanopart Res 23:1–12

    Article  Google Scholar 

  27. Rahman N, Raheem A (2024) Adsorption of Cd(II) ions on magnetic graphene oxide/cellulose modified with β-cyclodextrin: analytical interpretation via statistical physics modeling and fractal like kinetic approach. Environ Res 243:117868

    Article  CAS  PubMed  Google Scholar 

  28. Bulin C (2023) Adsorption mechanism and removal efficiency of magnetic graphene oxide-chitosan hybrid on aqueous Zn(II). Int J Biol Macromol 241:124588

    Article  CAS  PubMed  Google Scholar 

  29. Kümbetlioğlu F, Oskay KO, Ateş A (2024) Preparation and characterization of Fe3O4/ZIF-8 and Fe3O4-MnO2/ZIF-8 composites. J Iran Chem Soc 21:1079–1088

    Article  Google Scholar 

  30. Shen JF, Hu YZ, Shi M, Li N, Ma H, Ye M (2010) One step synthesis of graphene oxide-magnetic nanoparticle composite. J Phys Chem C 114:1498–1503

    Article  CAS  Google Scholar 

  31. Biglione C, Cappelletti AL, Strumia MC, Martín SE, Uberman PM (2018) Magnetic Pd nanocatalyst Fe3O4@Pd for C-C bond formation and hydrogenation reactions. J Nanopart Res 20:1–16

    Article  CAS  Google Scholar 

  32. Amitender S, Fayu W, Kavita Y, Anand S, Preeti T, Atul T (2023) Synergistic effect of ZnO nanoparticles with Cu2+ doping on antibacterial and photocatalytic activity. Inorg Chem Commun 157:111425

    Article  Google Scholar 

  33. Mai DD, To TL, Nguyen THN, Nguyen TG, Phung THV, Pham HL, Nguyen TL (2024) Optimize the rGO/Fe3O4 nanohybrid synthesis process for efficient As(V) removal. J Iran Chem Soc 21:525–534

    Article  CAS  Google Scholar 

  34. Wang X, Wang JW, Jiang LD, Jiang YB (2023) Adsorption of Pb2+ and Cu2+ in wastewater by lignosulfonate adsorbent prepared from corn straw. Int J Biol Macromol 247:125820

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Qin Y (2005) Equilibrium sorption isotherms for of Cu2+ on rice bran. Process Biochem 40(2):677–680

    Article  CAS  Google Scholar 

  36. Pereira JES, Silva AJF, Nascimento PP, Ferreira RLS, Barros Neto EL (2020) Carnauba straw powder treated with bentonite for copper adsorption in aqueous solution: isothermal, kinetic and thermodynamic study. Water Sci Technol 82(10):2178–2192

    Article  CAS  PubMed  Google Scholar 

  37. Ke OY, Zhu CH, Zhao Y, Wang L, Xie S, Wang Q (2015) Adsorption mechanism of magnetically separable Fe3O4/graphene oxide hybrids. Appl Surf Sci 355:562–569

    Article  Google Scholar 

  38. Badruddoza AZM, Shawon ZBZ, Daniel TWJ, Hidajata K, Uddin MS (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohyd Polym 91:322–332

    Article  CAS  Google Scholar 

  39. Chen H, Chen QS, Huang B, Wang SW, Wang LY (2018) High-potential use of L-Cysh modified bentonite for efficient removal of U(VI) from aqueous solution. J Radioanal Nucl Ch 316:71–80

    Article  CAS  Google Scholar 

  40. Li Y, Du Q, Liu T (2013) Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohyd Polym 95:501–507

    Article  CAS  Google Scholar 

  41. Wang J, Chen BL (2015) Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem Eng J 281:379–388

    Article  CAS  Google Scholar 

  42. Yang J, Wei Q, Tian CG, Li D, Li HM, Qin GC, Hu KH, Zhang QY (2023) Preparation of biomass carbon composites MgO@ZnO@BC and its adsorption and removal of Cu(II) and Pb(II) in wastewater. Molecules 123:6982

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Nature Science Foundation of China (No. 51902141), the Natural Science Foundation of Jiangsu Province (No. BK20191038), and the “Qinglan Project of Jiangsu Universities” of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

Guohao Sun and Juan Wu wrote the main manuscript text. Peixin Hu, Hechao Lu, Qinting He, and Fang Ren participated in the experiments and organized data to draw figures and tables. Wei Jiang provided guidance for the experiment and revised and polished the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Juan Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Hu, P., Lu, H. et al. Facile synthesis of magnetic high-efficiency renewable nanosorbent for recyclable adsorption of Cu2+. J Nanopart Res 26, 102 (2024). https://doi.org/10.1007/s11051-024-06017-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-06017-z

Keywords

Navigation