Skip to main content
Log in

Efficient ORR catalyst: porous activated carbon prepared from water hyacinth with high N content

  • Technology and Application
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Oxygen reduction reaction (ORR) is an important reaction process that occurs at the cathode of zinc-air batteries. An efficient reaction process is conducive to further research on sustainable energy devices. In order to improve the reaction speed, the ORR electrocatalyst containing uniform Fe–N-C sites in a porous carbon network similar to the shape of moth-eaten rotten wood was prepared using water hyacinth with a thin-layer structure inside as a template. Water hyacinth, plays a variety of synthetic functions in the construction of nanocatalysts, not only has a good enrichment effect on metal elements, but also is rich in N element. The doped Fe elements combine with the carbon and N elements of water hyacinth to form Fe–N-C active sites. The half-wave potential of SHL-Fe-HMNC is raised to 0.881 V (0.838 V for commercial 20wt% Pt/C) compared to the reversible hydrogen electrode (RHE). The power density of the liquid battery prepared based on SHL-Fe-HMNC reaches 110 mW·cm−2 (90 mW·cm−2 for 20 wt% Pt/C). Furthermore, the cycle time of ZABs exceeds 200 h. The flexible battery based on SHL-Fe-HMNC has a cycle stability of more than 10 h at a current of 10 mA·cm−2, and the open circuit voltage (OCV) reaches 1.511 V.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yaqoob L, Noor T, Iqbal N (2022) An overview of metal-air batteries, current progress, and future perspectives. J Energy Storage 56:106075. https://doi.org/10.1016/j.est.2022.106075

    Article  Google Scholar 

  2. Xu X, Zhang W, Li Y, Wang P, Zhang Y (2022) Synthesis of Co3O4@TiO2 catalysts for oxygen evolution and oxygen reduction reactions. Microporous Mesoporous Mater 335:111844. https://doi.org/10.1016/j.micromeso.2022.111844

    Article  CAS  Google Scholar 

  3. Wen J, Li X, Liu Y, Yang M, Liu B, Chen H, Li H (2022) Facile crafting of ultralong N-doped carbon nanotube encapsulated with FeCo nanoparticles as bifunctional electrocatalyst for rechargeable zinc-air batteries. Microporous Mesoporous Mater 336:111850. https://doi.org/10.1016/j.micromeso.2022.111850

    Article  CAS  Google Scholar 

  4. Wang K, Pan Z, Yu X (2019) Metal B-N-H hydrogen-storage compound: development and perspectives. J Alloy Compd 794:303324. https://doi.org/10.1016/j.jallcom.2019.04.240

    Article  CAS  Google Scholar 

  5. Liu SF, Wang XL, Xie D, Xia XH, Gu CD, Wu JB, Tu JP (2018) Recent development in lithium metal anodes of liquid-state rechargeable batteries. J Alloy Compd 730:135–149. https://doi.org/10.1016/j.jallcom.2017.09.204

    Article  CAS  Google Scholar 

  6. Salado M, Lizundia E (2022) Advances, challenges, and environmental impacts in metal–air battery electrolytes. Mater Today Energy 28:101064. https://doi.org/10.1016/j.mtener.2022.101064

    Article  CAS  Google Scholar 

  7. Wang Z, Zhou L, Li R, Qu K, Wang L, Kang W, Li H, Xiong S (2022) Electrocatalytic oxygen reduction of COF-derived porous Fe-Nx nanoclusters/carbon catalyst and application for high performance Zn-air battery. Microporous Mesoporous Mater 33:0111609. https://doi.org/10.1016/j.micromeso.2021.111609

    Article  CAS  Google Scholar 

  8. Chen Y, Xu J, He P, Qiao Y, Guo S, Yang H, Zhou H (2022) Metal-air batteries: progress and perspective. Sci Bullet 67:2449–2486. https://doi.org/10.1016/j.scib.2022.11.027

    Article  CAS  Google Scholar 

  9. Shin S, Yoon H, Yoon Y, Park S, Shin MW (2021) Porosity tailoring of the Zn-MOF-5 derived carbon materials and its effects on the performance as a cathode for lithium-air batteries. Microporous Mesoporous Mater 311:110726. https://doi.org/10.1016/j.micromeso.2020.110726

    Article  CAS  Google Scholar 

  10. Xiao X, Zheng Z, Zhong X, Gao R, Piao Z, Jiao M, Zhou G (2023) Rational design of flexible Zn-based batteries for wearable electronic devices. ACS Nano 17:1764–1802. https://doi.org/10.1021/acsnano.2c09509

    Article  CAS  PubMed  Google Scholar 

  11. Fang W, Zhao J, Zhang W, Chen P, Bai Z, Wu M (2021) Recent progress and future perspectives of flexible Zn-air batteries. J Alloy Compd 869:158918. https://doi.org/10.1016/j.jallcom.2021.158918

    Article  CAS  Google Scholar 

  12. Dou J, Qi M, Wang H, Shi W, Luan X, Guo W, Xiao L, Zhao C, Cheng D, Jiang T, Zhang W, Bian W, Zhou B (2021) SiO2-templated ferrocenyl porous organic polymer gel derived porous Carbon/Fe2C nanohybrids with interpenetrating macropores as oxygen reduction electrocatalyst for Zn-air batteries. Microporous Mesoporous Mater 320:111101. https://doi.org/10.1016/j.micromeso.2021.111101

    Article  CAS  Google Scholar 

  13. Stock D, Dongmo S, Janek J, Schröder D (2019) Benchmarking anode concepts: the future of electrically rechargeable zinc–air batteries. ACS Energy Lett 4:1287–1300. https://doi.org/10.1021/acsenergylett.9b00510

    Article  CAS  Google Scholar 

  14. Chukwu E, Molina L, Rapp C, Morales L, Jin Z, Karakalos S, Wang H, Lee S, Zachman MJ, Yang M (2023) Crowded supported metal atoms on catalytically active supports may compromise intrinsic activity: a case study of dual-site Pt/α-MoC catalysts. Appl Catal B 329:122532. https://doi.org/10.1016/j.apcatb.2023.122532

    Article  CAS  Google Scholar 

  15. Zhang Y, Zhu S, Wang X, Jin Z, Ge J, Liu C, Xing W (2023) Heteroatom-doped M-N-C catalysts for oxygen reduction reactions: doping strategies and active site regulation. J Electroanal Chem 117506. https://doi.org/10.1016/j.jelechem.2023.117506

  16. Xu L-H, Che P-C, Zhang X-J, Cosnier S, Shan D (2023) FeP nanoparticles highly dispersed on N, P-doped petaloid carbon nanosheet: interface engineering and boosted intrinsic ORR activity. Appl Surf Sci 620:156770. https://doi.org/10.1016/j.apsusc.2023.156770

    Article  CAS  Google Scholar 

  17. Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B, Escudero-Escribano M, Paoli EA, Frydendal R, Hansen TW, Chorkendorff I, Stephens IEL, Rossmeisl J (2013) Enabling direct H2O2 production through rational electrocatalyst design. Nature Mater 12:1137–1143. https://doi.org/10.1038/nmat3795

    Article  CAS  Google Scholar 

  18. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:eaad4998. https://doi.org/10.1126/science.aad4998

    Article  PubMed  Google Scholar 

  19. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764. https://doi.org/10.1126/science.1168049

    Article  CAS  PubMed  Google Scholar 

  20. Guo Y, Yuan P, Zhang J, Hu Y, Amiinu IS, Wang X, Zhou J, Xia H, Song Z, Xu Q, Mu S (2018) Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn–air batteries. ACS Nano 12:1894–1901. https://doi.org/10.1021/acsnano.7b08721

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y, Ji S, Zhao S, Chen W, Dong J, Cheong W-C, Shen R, Wen X, Zheng L, Rykov AI, Cai S, Tang H, Zhuang Z, Chen C, Peng Q, Wang D, Li Y (2018) Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat Commun 9:5422. https://doi.org/10.1038/s41467-018-07850-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Toyama Y, Miyake K, Shu Y, Moroto K, Ma J, Zheng T, Tanaka S, Nishiyama N, Fukuhara C, Kong CY (2020) Solvent-free synthesis of Fe/N doped hierarchal porous carbon as an ideal electrocatalyst for oxygen reduction reaction. Mater Today Energy 17:100444. https://doi.org/10.1016/j.mtener.2020.100444

    Article  Google Scholar 

  23. Zhao K, Liu S, Li Y, Wei X, Ye G, Zhu W, Su Y, Wang J, Liu H, He Z, Zhou Z, Sun S (2022) Insight into the mechanism of axial ligands regulating the catalytic activity of Fe–N4 sites for oxygen reduction reaction. Adv Energy Mater 12:2103588. https://doi.org/10.1002/aenm.202103588

    Article  CAS  Google Scholar 

  24. Huang T, Wei J, Zhu X, Zhang E (2021) Soybean powder enables the synthesis of Fe–N–C catalysts with high ORR activities in microbial fuel cell applications. Int J Hydrogen Energy 46:30334–30343. https://doi.org/10.1016/j.ijhydene.2021.06.171

    Article  CAS  Google Scholar 

  25. Ling C, Xie W-Y, He S-F, Liang G-C, Xiao X-Y, Yang C-L, Liu H-Y (2024) Si-doped biomass carbon supported Fe-N-C catalyst derived from pyrolysis of iron porphyrin for oxygen reduction reaction. J Alloy Compd 987:174172. https://doi.org/10.1016/j.jallcom.2024.174172

    Article  CAS  Google Scholar 

  26. Li C, Wu M, Liu R (2019) High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Appl Catal B 244:150–158. https://doi.org/10.1016/j.apcatb.2018.11.039

    Article  CAS  Google Scholar 

  27. Peng H, Zhang W, Song Y, Yin F, Zhang C, Zhang L (2020) In situ construction of Co/Co3O4 with N-doped porous carbon as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Catal Today 355:286–294. https://doi.org/10.1016/j.cattod.2019.05.003

    Article  CAS  Google Scholar 

  28. Lima RMAP, Dos Reis GS, Lassi U, Lima EC, Dotto GL, De Oliveira HP (2023) Sustainable supercapacitors based on polypyrrole-doped activated biochar from wood waste electrodes, C 9:59. https://doi.org/10.3390/c9020059

  29. Cimirro NFGM, Lima EC, Cunha MR, Thue PS, Grimm A, Dos Reis GS, Rabiee N, Saeb MR, Keivanimehr F, Habibzadeh S (2022) Removal of diphenols using pine biochar. Kinetics, equilibrium, thermodynamics, and mechanism of uptake. J Mol Liq 364:119979. https://doi.org/10.1016/j.molliq.2022.119979

    Article  CAS  Google Scholar 

  30. Wang G, Deng Y, Yu J, Zheng L, Du L, Song H, Liao S (2017) From Chlorella to nestlike framework constructed with doped carbon nanotubes: a biomass-derived, high-performance, bifunctional oxygen reduction/evolution catalyst. ACS Appl Mater Interfaces 9:32168–32178. https://doi.org/10.1021/acsami.7b10668

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, Wei L, Chu C, Shen J (2022) Tofu gel-derived nitrogen and trace iron co-doped porous carbon as highly efficient air-cathode electrocatalyst for microbial fuel cells. J Power Sources 527:230960. https://doi.org/10.1016/j.jpowsour.2021.230960

    Article  CAS  Google Scholar 

  32. Barua VB, Goud VV, Kalamdhad AS (2018) Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production. Renew Energy 126:21–29. https://doi.org/10.1016/j.renene.2018.03.028

    Article  CAS  Google Scholar 

  33. Su W, Sun Q, Xia M, Wen Z, Yao Z (2018) The resource utilization of water hyacinth (Eichhornia crassipes [Mart.] Solms) and its challenges. Resources 7:46. https://doi.org/10.3390/resources7030046

    Article  Google Scholar 

  34. Gunnarsson CC, Petersen CM (2007) Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manage 27:117–129. https://doi.org/10.1016/j.wasman.2005.12.011

    Article  Google Scholar 

  35. Erythropel HC, Zimmerman JB, de Winter TM, Petitjean L, Melnikov F, Lam CH, Lounsbury AW, Mellor KE, Janković NZ, Tu Q, Pincus LN, Falinski MM, Shi W, Coish P, Plata DL, Anastas PT (2018) The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem 20:1929–1961. https://doi.org/10.1039/C8GC00482J

    Article  CAS  Google Scholar 

  36. Liu X, Li L, Zhou W, Zhou Y, Niu W, Chen S (2015) High-performance electrocatalysts for oxygen reduction based on nitrogen-doped porous carbon from hydrothermal treatment of glucose and dicyandiamide. ChemElectroChem 2:803–810. https://doi.org/10.1002/celc.201500002

    Article  CAS  Google Scholar 

  37. Yan Z, Dai C, Zhang M, Lv X, Zhao X, Xie J (2019) Nitrogen doped porous carbon with iron promotion for oxygen reduction reaction in alkaline and acidic media. Int J Hydrogen Energy 44:4090–4101. https://doi.org/10.1016/j.ijhydene.2018.12.180

    Article  CAS  Google Scholar 

  38. Chen X, Wang N, Shen K, Xie Y, Tan Y, Li Y (2019) MOF-derived isolated fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl Mater Interfaces 11:25976–25985. https://doi.org/10.1021/acsami.9b07436

    Article  CAS  PubMed  Google Scholar 

  39. Cai C, Chen Y, Hu P, Zhu T, Li X, Yu Q, Zhou L, Yang X, Mai L (2022) Regulating the interlayer spacings of hard carbon nanofibers enables enhanced pore filling sodium storage. Small 18:2105303. https://doi.org/10.1002/smll.202105303

    Article  CAS  Google Scholar 

  40. Zhao S, Yin H, Du L, He L, Zhao K, Chang L, Yin G, Zhao H, Liu S, Tang Z (2014) Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 8:12660–12668. https://doi.org/10.1021/nn505582e

    Article  CAS  PubMed  Google Scholar 

  41. Tang C, Wang H-F, Chen X, Li B-Q, Hou T-Z, Zhang B, Zhang Q, Titirici M-M, Wei F (2016) Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv Mater 28:6845–6851. https://doi.org/10.1002/adma.201601406

    Article  CAS  PubMed  Google Scholar 

  42. Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown CL, Yao X (2016) Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv Mater 28:9532–9538. https://doi.org/10.1002/adma.201602912

    Article  CAS  PubMed  Google Scholar 

  43. Lei Z-D, Xue Y-C, Chen W-Q, Li L, Qiu W-H, Zhang Y, Tang L (2018) the influence of carbon nitride nanosheets doping on the crystalline formation of MIL-88B(Fe) and the photocatalytic activities. Small 14:1802045. https://doi.org/10.1002/smll.201802045

    Article  CAS  Google Scholar 

  44. Jia Y, Zhang L, Gao G, Chen H, Wang B, Zhou J, Soo MT, Hong M, Yan X, Qian G, Zou J, Du A, Yao X (2017) A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv Mater 29:1700017. https://doi.org/10.1002/adma.201700017

    Article  CAS  Google Scholar 

  45. Li Z, Zhang Y, Feng Y, Cheng C, Qiu K, Dong C, Liu H, Du X (2019) Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions. Adv Funct Mater 29:1903444. https://doi.org/10.1002/adfm.201903444

    Article  CAS  Google Scholar 

  46. Liang D, Lian C, Xu Q, Liu M, Liu H, Jiang H, Li C (2020) Interfacial charge polarization in Co2P2O7@N, P co-doped carbon nanocages as Mott-Schottky electrocatalysts for accelerating oxygen evolution reaction. Appl Catal B 268:118417. https://doi.org/10.1016/j.apcatb.2019.118417

    Article  CAS  Google Scholar 

  47. Liu X, Yang W, Chen L, Liu Z, Long L, Wang S, Liu C, Dong S, Jia J (2020) Graphitic carbon nitride (g-C3N4)-derived bamboo-like carbon nanotubes/Co nanoparticles hybrids for highly efficient electrocatalytic oxygen reduction. ACS Appl Mater Interfaces 12:4463–4472. https://doi.org/10.1021/acsami.9b18454

    Article  CAS  PubMed  Google Scholar 

  48. Rodríguez-Padrón D, Puente-Santiago AR, Cano M, Caballero A, Muñoz-Batista MJ, Luque R (2020) Improving electrochemical hydrogen evolution of Ag@CN nanocomposites by synergistic effects with α-rich proteins. ACS Appl Mater Interfaces 12:2207–2215. https://doi.org/10.1021/acsami.9b13571

    Article  CAS  PubMed  Google Scholar 

  49. Fan C, Wang X, Wu X, Chen Y, Wang Z, Li M, Sun D, Tang Y, Fu G (2023) Neodymium-evoked valence electronic modulation to balance reversible oxygen electrocatalysis. Adv Energy Mater 13:2203244. https://doi.org/10.1002/aenm.202203244

    Article  CAS  Google Scholar 

  50. Liu X, Hou Y, Tang M, Wang L (2023) Atom elimination strategy for MoS2 nanosheets to enhance photocatalytic hydrogen evolution. Chinese Chem Lett 34:107489. https://doi.org/10.1016/j.cclet.2022.05.003

    Article  CAS  Google Scholar 

  51. Su Y, Jiang H, Zhu Y, Yang X, Shen J, Zou W, Chen J, Li C (2014) Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J Mater Chem A 2:7281–7287. https://doi.org/10.1039/C4TA00029C

    Article  CAS  Google Scholar 

  52. Tan Y, Xu C, Chen G, Fang X, Zheng N, Xie Q (2012) Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction. Adv Funct Mater 22:4584–4591. https://doi.org/10.1002/adfm.201201244

    Article  CAS  Google Scholar 

  53. Martinaiou I, Monteverde Videla AHA, Weidler N, Kübler M, Wallace WDZ, Paul S, Wagner S, Shahraei A, Stark RW, Specchia S, Kramm UI (2020) Activity and degradation study of an Fe-N-C catalyst for ORR in direct methanol fuel cell (DMFC). Appl Catal B 262:118217. https://doi.org/10.1016/j.apcatb.2019.118217

    Article  CAS  Google Scholar 

  54. Xu X, Zhang X, Kuang Z, Xia Z, Rykov AI, Yu S, Wang J, Wang S, Sun G (2022) Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: the influence of structure and structural evolution of active site. Appl Catal B 309:121290. https://doi.org/10.1016/j.apcatb.2022.121290

    Article  CAS  Google Scholar 

  55. Huang Z, Pan H, Yang W, Zhou H, Gao N, Chaopeng F, Li S, Li H, Kuang Y (2018) In situ self-template synthesis of Fe–N-doped double-shelled hollow carbon microspheres for oxygen reduction reaction. ACS Nano 12:208–216. https://doi.org/10.1021/acsnano.7b05832

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Chen J, Cai P, Wen Z (2018) An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation. J Mater Chem A 6:4948–4954. https://doi.org/10.1039/C7TA10374C

    Article  CAS  Google Scholar 

  57. Niu Q, Chen B, Guo J, Nie J, Guo X, Ma G (2019) Flexible, porous, and metal–heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery. Nano-Micro Lett 11:8. https://doi.org/10.1007/s40820-019-0238-4

    Article  CAS  Google Scholar 

  58. Kundu A, Samanta A, Raj CR (2021) Hierarchical hollow MOF-derived bamboo-like N-doped carbon nanotube-encapsulated Co0.25Ni0.75 alloy: an efficient bifunctional oxygen electrocatalyst for zinc–air battery. ACS Appl Mater Interfaces 13:30486–30496. https://doi.org/10.1021/acsami.1c01875

    Article  CAS  PubMed  Google Scholar 

  59. Samanta A, Ghatak A, Bhattacharyya S, Raj CR (2020) Transition metal alloy integrated tubular carbon hybrid nanostructure for bifunctional oxygen electrocatalysis. Electrochim Acta 348:136274. https://doi.org/10.1016/j.electacta.2020.136274

    Article  CAS  Google Scholar 

  60. Sun J, Yin H, Liu P, Wang Y, Yao X, Tang Z, Zhao H (2016) Molecular engineering of Ni–/Co–porphyrin multilayers on reduced graphene oxide sheets as bifunctional catalysts for oxygen evolution and oxygen reduction reactions. Chem Sci 7:5640–5646. https://doi.org/10.1039/C6SC02083F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Quevedo MC, Galicia G, Mayen-Mondragon R, Llongueras JG (2018) Role of turbulent flow seawater in the corrosion enhancement of an Al–Zn–Mg alloy: an electrochemical impedance spectroscopy (EIS) analysis of oxygen reduction reaction (ORR). J Market Res 7:149–157. https://doi.org/10.1016/j.jmrt.2017.06.004

    Article  CAS  Google Scholar 

  62. Q Ma, H Jin, J Zhu, Z Li, H Xu, B Liu, Z Zhang, J Ma, S Mu (2021) Stabilizing Fe–N–C catalysts as model for oxygen reduction reaction-Ma-2021-Advanced Science-Wiley Online Library 8:2102209. https://doi.org/10.1002/advs.202102209

Download references

Acknowledgements

This work was financed by the Natural Science Research Project of Anhui Educational Committee (Grant No. KJ2020A0328) and the National Natural Science Foundation of China (Grant No.51502005).

Funding

Natural Science Research Project of Anhui Educational Committee,KJ2020A0328,yang li,National Natural Science Foundation of China,51502005,yang li

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li or Guang Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2547 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Li, Y., Li, X. et al. Efficient ORR catalyst: porous activated carbon prepared from water hyacinth with high N content. J Nanopart Res 26, 93 (2024). https://doi.org/10.1007/s11051-024-06005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-06005-3

Keywords

Navigation