Skip to main content
Log in

A DFT study of structural, optical, and elastic properties of the transition metal chalcogenide compounds SrXSe3 (X = Ti or Zr)

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, we report on a comparative study of the structural, optical, and elastic properties of SrTiSe3 and SrZrSe3 compounds using the DFT method. The lattice constants of the compounds are calculated using the GGA-PBE approximation and the hybrid functional Heyd, Scuseria, and Ernzerhof (HSE). The properties of the SrTiSe3 and SrZrSe3 materials in relation to electronic composition, elastic constants, and optical characteristics are deduced and analyzed. Both compounds display magnetic behavior, according to electronic calculations. SrTiSe3 shows metallic behavior, as the calculated bandgap value is zero. SrZrSe3, on the other hand, has a bandgap of 0.347 eV, which demonstrates its semiconducting nature. We have demonstrated that the plasma frequency of SrTiSe3 is around 1.77836. Using density functional theory, we report on the electronic characteristics of the compounds under mechanical stress. For SrZrSe3, the gap energy values rise with compressive stress and decrease with increasing tensile stress to zero. In addition, the study includes the extinction coefficient, optical conductivity, dielectric tensor, electron energy loss, and refractive index.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Tedstone AA, Lewis DJ, O’Brien P (2016) Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem Mater 28:1965

    Article  CAS  Google Scholar 

  2. Chen EM, Stoyko SS, Aitken JA, Poudeu PFP (2017) Tuning the optical, electronic and thermal properties of Cu3NbS4-xSex through chemical substitution. Inorg Chem Front 4:1493

    Article  CAS  Google Scholar 

  3. Han SA, Bhatia R, Kim S-W (2015) Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Converg 2:17

    Article  Google Scholar 

  4. Caroline SC, Madhusudanan SP, Dalapati GK et al (2022) Energy storage technologies for sustainable development. In: Sulfide and selenide based materials for emerging applications. Elsevier, pp 583–606

  5. Wang B, Liu B, Xu T et al (2022) Metal oxy compounds heterogeneous interfaces joining for water splitting. In: Metal oxides and related solids for electrocatalytic water splitting. Elsevier, pp 273–292

  6. Bernal MM et al (2016) Luminescent transition metal dichalcogenide nanosheets through one-step liquid phase exfoliation. 2D Mater 3:035014

    Article  Google Scholar 

  7. Shanmugaratnam S, Rasalingam S (2019) Transition metal chalcogenide (TMC) nanocomposites for environmental remediation application over extended solar irradiation. In: Nanocatalysts. IntechOpen, London, pp 1–22

  8. Wang D-S, Zheng W, Hao C-H, Peng Q, Li Y-D (2009) A synthetic method for transition-metal chalcogenide nanocrystals. Chem Eur J 15:1870

    Article  CAS  PubMed  Google Scholar 

  9. Giuffredi G, Asset T, Liu Y, Atanassov P, Di Fonzo F (2021) Transition metal chalcogenides as a versatile and tunable platform for catalytic CO2 and N2 electroreduction. ACS Mater 1:6–36

    Article  CAS  Google Scholar 

  10. Goktas S, Goktas A (2021) A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: a review. J Alloys Compds 863:158734

    Article  CAS  Google Scholar 

  11. Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K (2016) Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem Rev 116:13752–13990

    Article  CAS  PubMed  Google Scholar 

  12. Gul IH, Maqsood A (2008) Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J Alloys Compds 465:227–231

    Article  CAS  Google Scholar 

  13. Goktas A, Aslan E, Arslan F, Kilic A (2022) Characterization of multifunctional solution-processed Sn1-xZnxS nanostructured thin films for photosensitivity and photocatalytic applications. Opt Mater 133:112984

    Article  CAS  Google Scholar 

  14. Huang FQ, Ibers JA (2000) Syntheses and structures of the new quaternary rubidium selenides RbLn2CuSe4 (Ln=Sm, Gd, Dy), Rb1.5Ln2Cu2.5Se5 (Ln=Gd, Dy), and RbSm2Ag3Se5. J Solid State Chem 151:317–322

    Article  CAS  Google Scholar 

  15. Goktas A, Modanlı S, Tumbul A, Kilic A (2022) Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: role of crystallite/grain size and microstrain in photocatalytic performance. J Alloys Compd 893:162334

    Article  CAS  Google Scholar 

  16. Toh RJ, Sofer Z, Pumera M (2016) Catalytic properties of group 4 transition metal dichalcogenides (MX2; M = Ti, Zr, Hf; X = S, Se, Te). J Mater Chem A 4:18322–18334

    Article  CAS  Google Scholar 

  17. Aba Z, Göktaş A, Kilic A (2023) Characterization of Zn1-xLaxS thin films; compositional, surface, optical, and photoluminescence properties for possible optoelectronic and photocatalytic applications. J Sol-Gel Sci Technol 109:1–12

    Google Scholar 

  18. Anh NPQ, Hiep NT, Lu DV, Nguyen CQ, Hieu NN, Vi VTT (2023) Crystal lattice and electronic and transport properties of Janus ZrSiSZ2 (Z = N, P, As) monolayers by first-principles investigations. Nanoscale Adv 5:6705–6713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mikailzade FA, Önal F, Maksutoglu M, Zarbali MZ, Göktaş A (2018) Structure and magnetization of polycrystalline La0.66Ca0.33MnO3 and La0.66Ba0.33MnO3 films prepared using sol-gel technique. J Supercond Nov Magn 31:4141–4145

    Article  CAS  Google Scholar 

  20. Guo Z, Sun F, Yuan W (2017) Chemical intercalations in layered transition metal chalcogenides: syntheses, structures, and related properties. Cryst Growth Des 17:2238

    Article  CAS  Google Scholar 

  21. Ju M-G, Dai J, Ma L, Cheng Z (2017) Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv Energy Mater 7:1700216

    Article  Google Scholar 

  22. Hancock C, Porras-Vazquez J, Keenan P, Slater P (2015) Oxyanions in perovskites: from superconductors to solid oxide fuel cells. Dalton Trans 44:10559

    Article  CAS  PubMed  Google Scholar 

  23. Yan B, Jansen M, Felser C (2013) A large-energy-gap oxide topological insulator based on the superconductor BaBiO3. Nat Phys 9:709

    Article  CAS  Google Scholar 

  24. Idrissi S, Labrim H, Bahmad L, Benyoussef A (2021) DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications. Chem Phys Lett 766:138347

    Article  CAS  Google Scholar 

  25. AitRaiss A, Sbai Y, Bahmad L, Benyoussef A (2015) Magnetic and magneto-optical properties of doped and co-doped CdTe with (Mn, Fe): ab-initio study. J Magn Magn Mater 385:295

    Article  CAS  Google Scholar 

  26. Selmani Y, Labrim H, Ziti S, Bahmad L (2022) Electronic, optical and thermoelectric properties of the CsMF3 (M= Si or Ge) fluoro-perovskites. Comput Condens Matter 32:e00699

    Article  Google Scholar 

  27. Pisoni A, Jacimovic JI, Barisic OS, Spina M, Gaal R, Forro L, Horvath E (2014) Ultra-low thermal conductivity in organic − inorganic hybrid perovskite CH3NH3PbI3. J Phys Chem Lett 5:2488

    Article  CAS  PubMed  Google Scholar 

  28. Homes C, Vogt T, Shapiro S, Wakimoto S, Ramirez A (2001) Optical response of high-dielectric-constant perovskite-related oxide. Science 293:673

    Article  CAS  PubMed  Google Scholar 

  29. Lin Q, Armin A, Nagiri RCR, Burn PL, Meredith P (2015) Electro-optics of perovskite solar cells. Nat Photonics 9:106

    Article  CAS  Google Scholar 

  30. Yu Z et al (2021) Chalcogenide perovskite BaZrS3 thin-film electronic and optoelectronic devices by low temperature processing. Nano Energy 85:105959

    Article  CAS  Google Scholar 

  31. Jabar A, Benyoussef S, Bahmad L (2023) A first principal study of the electronic, optic and thermoelectric properties of double perovskite K2CuRhX6 (X = Cl or I). Opt Quant Electron 55:839

    Article  CAS  Google Scholar 

  32. Jabar A, Labrim H, Larbi L, Jaber B, Bahmad L, Benyoussef S (2023) Study of physical properties of the new inorganic perovskites LiSnX3 (X= Br or I): a DFT approach. Mod Phys Lett B. https://doi.org/10.1142/S0217984923501324

    Article  Google Scholar 

  33. Bronger W (1985) Ternary transition metal chalcogenides with framework structures and the characterization of their bonding by magnetic properties. Pure Appl Chem 57:1363

    Article  CAS  Google Scholar 

  34. Gao M-R, Xu Y–F, Jiang J, Yu S–H (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42:2986

    Article  CAS  PubMed  Google Scholar 

  35. Djieutedjeu H, Olvera A, Page A, Uher C, Poudeu PFP (2015) High-T-c ferromagnetism and electron transport in p-Type Fe1-xSnxSb2Se4 semiconductors. Inorg Chem 54:10371

    Article  CAS  PubMed  Google Scholar 

  36. Djieutedjeu H, Makongo JPA, Rotaru A, Palasyuk A, Takas NJ, Zhou XY, Ranmohotti KGS, Spinu L, Uher C, Poudeu PFP (2011) Crystal structure, charge transport, and magnetic properties of MnSb2Se4. Eur J Inorg Chem 2011:3969

    Article  CAS  Google Scholar 

  37. Bailey TP, Hui S, Xie HY, Olvera A, Poudeu PFP, Tang XF, Uher C (2016) Enhanced ZT and attempts to chemically stabilize Cu2Se via Sn doping. J Mater Chem A 4:17225

    Article  CAS  Google Scholar 

  38. El Yadari M, Bahmad L, El Kenz A, Benyoussef A, A. (2013) Monte Carlo study of the double perovskite nano Sr2VMoO6. J Alloys Compd 579:86

    Article  Google Scholar 

  39. Idrissi S, Khalladi R, Mtougui S, Ziti S, Labrim H, El Housni I, El Mekkaoui N, Bahmad L (2019) Magnetism and phase diagrams of the doubles perovskite Sr2CrIrO6: Monte Carlo simulations. Physica A: Stat Mech Appl 523:714

    Article  CAS  Google Scholar 

  40. Arejdal M, Bahmad L, Abbassi A, Benyoussef A (2015) Magnetic properties of the double perovskite Ba2NiUO6. Physica A: Stat Mech Appl 437:375

    Article  CAS  Google Scholar 

  41. Nid-Bahami, et al (2016) Magnetic properties of double perovskite Sr2RuHoO6: Monte Carlo Simulation. J Magn Magn Mater 417:258

    Article  CAS  Google Scholar 

  42. Sidi Ahmed S, Boujnah M, Bahmad L, Benyoussef A, El Kenz A (2017) Magnetic and electronic properties of double perovskite Lu2MnCoO6: ab-initio calculations and Monte Carlo simulation. Chem Phys Lett 685:191

    Article  CAS  Google Scholar 

  43. Deb J, Majidi R, Sarkar U (2023) Bilayer CdS structure: a promising candidate for photocatalytic and optoelectronic applications. ACS Appl Opt Mater 1:201

    Article  CAS  Google Scholar 

  44. Deb J, Sarkar U (2021) Boron-nitride and boron-phosphide doped twin-graphene: applications in electronics and optoelectronics. Appl Surf Sci 541:148657

    Article  CAS  Google Scholar 

  45. Bhattacharya B, Deb J, Sarkar U (2019) Boron-phosphorous doped graphyne: a near-infrared light absorber. AIP Adv 9:095031

    Article  Google Scholar 

  46. Deb J, Seriani N, Sarkar U (2021) Ultrahigh carrier mobility of penta-graphene: a first-principle study. Physica E: Low-dimensional Syst Nanostruct 127:114507

    Article  CAS  Google Scholar 

  47. Deb J, Paul D, Sarkar U (2020) Pentagraphyne: a new carbon allotrope with superior electronic and optical property. J Mater Chem C 8:16143

    Article  CAS  Google Scholar 

  48. Deb J, Bhattacharya B, Paul D, Sarkar U (2016) Interaction of nitrogen molecule with pristine and doped graphyne nanotube. Physica E: Low-dimensional Syst Nanostruct 84:330

    Article  CAS  Google Scholar 

  49. Paul D, Deb J, Bhattacharya B, Sarkar U (2018) Electronic and optical properties of C24, C12X6Y6, and X12Y12 (X = B, Al and Y = N, P). J Mol Model 24:204

    Article  PubMed  Google Scholar 

  50. Hussain MI, Khalil RMA, Hussain F (2021) computational exploration of structural, electronic, and optical properties of novel combinations of inorganic Ruddlesden-Popper layered perovskites Bi2XO4 (X = Be, Mg) using Tran and Blaha-modified Becke-Johnson approach for optoelectronic applications. Energy Technol 9:2001026

    Article  CAS  Google Scholar 

  51. HussainKhalil MIRMA (2022) Density functional theory studies of the structural, optoelectronic, bond stiffness and lattice dynamical properties of double perovskite oxides M2YVO6 (M= Mg, Sr): promising candidates for optoelectronic applications. Mater Sci Semicond Process 152:107050

    Article  Google Scholar 

  52. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  53. Koelling DD, Harmon BN (1977) A technique for relativistic spin-polarised calculations. J Phys C: Solid State Phys 10:3107

    Article  CAS  Google Scholar 

  54. Madsen GKH, Blaha P, Schwarz K, Sjostedt E, Nordstrom L (2001) Efficient linearization of the augmented plane-wave method. Phys Rev B 64:195134

    Article  Google Scholar 

  55. Schwarz K, Blaha P, Madsen GKH (2002) Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput Phys Commun 147:71

    Article  Google Scholar 

  56. Tyuterev VG, Vast N (2006) Murnaghan’s equation of state for the electronic ground state energy. Comput Mater Sci 38:350–353

    Article  CAS  Google Scholar 

  57. Beckstein O, Klepeis JE, Hart GLW, Pankratov O (2001) First-principles elastic constants and electronic structure of α−Pt2Si and PtSi. Phys Rev B 63:134112

    Article  Google Scholar 

  58. Vu TV, Vi VTT, Phuc HV, Nguyen CV, Poklonski NA, Duque CA, Rai DP, Hoi BD, Hieu NN (2021) Electronic, optical, and thermoelectric properties of Janus In-based monochalcogenides. J Phys: Condens Matter 33:225503

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. J. and L. B. performed and verified the analytical methods and the writing of this work. S. B. investigated and supervised the findings of this work. All authors discussed the results and contributed to the final version of the manuscript.

Corresponding author

Correspondence to L. Bahmad.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabar, A., Bahmad, L. & Benyoussef, S. A DFT study of structural, optical, and elastic properties of the transition metal chalcogenide compounds SrXSe3 (X = Ti or Zr). J Nanopart Res 26, 53 (2024). https://doi.org/10.1007/s11051-024-05966-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05966-9

Keywords

Navigation