Skip to main content
Log in

Polyol-mediated synthesis and characterization of magnesium–aluminum spinel nanoparticles

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

MgAl2O4 spinel nanoparticles were successfully synthesized using the polyol-mediated process. The study focused on the use of aluminum nitrate and magnesium acetate as precursor salts, with diethylene glycol as the solvent. The synthesis was conducted at three different temperatures: 150, 180, and 230 °C, followed by a subsequent calcination step. The dried samples consisted of a combination of magnesium oxalate and an unidentified amorphous or nanostructured phase. Upon calcination, all samples exhibited the desired MgAl2O4 spinel structure, along with a small amount of MgO. The FTIR spectra of the calcined samples confirmed the crystal structure of the MgAl2O4 phase as an inverse spinel. Scanning electron microscopy images revealed the quasi-spherical morphology of the nanoparticles, with particle sizes ranging from 70 to 120 nm for dried samples and 50 to 60 nm for calcined samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ganesh I (2013) A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int Mater Rev 58(2):63–112. https://doi.org/10.1179/1743280412Y.0000000001

    Article  CAS  ADS  Google Scholar 

  2. Lv L, Xiao G, Ding D (2021) Improved thermal shock resistance of low-carbon Al2O3–C refractories fabricated with C/MgAl2O4 composite powders. Ceram Int 47(14):20169–20177. https://doi.org/10.1016/J.CERAMINT.2021.04.023

    Article  CAS  Google Scholar 

  3. Shafiee H, Salehirad A, Samimi A (2020) Effect of synthesis method on structural and physical properties of MgO/MgAl2O4 nanocomposite as a refractory ceramic. Appl Phys A Mater Sci Process 126(3). https://doi.org/10.1007/s00339-020-3369-z

  4. Gu Q, Zhao F, Liu X, Jia Q (2019) Preparation and thermal shock behavior of nanoscale MgAl2O4 spinel-toughened MgO-based refractory aggregates. Ceram Int 45(9):12093–12100. https://doi.org/10.1016/J.CERAMINT.2019.03.107

    Article  CAS  Google Scholar 

  5. Gajdowski C et al (2017) Influence of post-HIP temperature on microstructural and optical properties of pure MgAl2O4 spinel: from opaque to transparent ceramics. J Eur Ceram Soc 37(16):5347–5351. https://doi.org/10.1016/J.JEURCERAMSOC.2017.07.031

    Article  CAS  Google Scholar 

  6. Balabanov SS et al (2015) Fabrication of transparent MgAl2O4 ceramics by hot-pressing of sol-gel-derived nanopowders. Ceram Int 41(10):13366–13371. https://doi.org/10.1016/J.CERAMINT.2015.07.123

    Article  CAS  Google Scholar 

  7. Zhang P et al (2015) Aqueous gelcasting of the transparent MgAl2O4 spinel ceramics. J Alloys Compd 646:833–836. https://doi.org/10.1016/J.JALLCOM.2015.05.275

    Article  CAS  Google Scholar 

  8. Yu S, Hu Y, Cui H, Cheng Z, Zhou Z (2021) Ni-based catalysts supported on MgAl2O4 with different properties for combined steam and CO2 reforming of methane. Chem Eng Sci 232:116379. https://doi.org/10.1016/J.CES.2020.116379

    Article  CAS  Google Scholar 

  9. Rezaei M, Alavi SM (2019) Dry reforming over mesoporous nanocrystalline 5% Ni/M-MgAl2O4 (M: CeO2, ZrO2, La2O3) catalysts. Int J Hydrogen Energy 44(31):16516–16525. https://doi.org/10.1016/J.IJHYDENE.2019.04.213

    Article  CAS  Google Scholar 

  10. Qiu Y, Fu E, Gong F, Xiao R (2022) Catalyst support effect on ammonia decomposition over Ni/MgAl2O4 towards hydrogen production. Int J Hydrogen Energy 47(8):5044–5052. https://doi.org/10.1016/J.IJHYDENE.2021.11.117

    Article  Google Scholar 

  11. Wongtawee W, Amornpitoksuk P, Randorn C, Rattana T, Suwanboon S (2022) Photocatalytic activity under visible light illumination of organic dyes over g-C3N4/MgAl2O4 nanocomposite. J Indian Chem Soc 99(8):100628. https://doi.org/10.1016/J.JICS.2022.100628

    Article  CAS  Google Scholar 

  12. Wongtawee W, Amornpitoksuk P, Randorn C, Rattana T, Suwanboon S (2023) Amelioration of photocatalytic activity of MgAl2O4 spinel photocatalyst by coupling with WO3. Inorg Chem Commun 152:110654. https://doi.org/10.1016/J.INOCHE.2023.110654

    Article  CAS  Google Scholar 

  13. Riahi R, Taher MA, Beitollahi H (2022) Hydroxylamine electrochemical sensor based on magnesium aluminate spinel nanoparticles modified electrode. Int J Environ Anal Chem 1–13. https://doi.org/10.1080/03067319.2022.2118587

  14. Li X et al (2022) Insight into site occupancy of cerium and manganese ions in MgAl2O4 and their energy transfer for dual-mode optical thermometry. J Alloys Compd 928:166701. https://doi.org/10.1016/J.JALLCOM.2022.166701

    Article  CAS  Google Scholar 

  15. Hatton P, Uberuaga BP (2023) Short range order in disordered spinels and the impact on cation vacancy transport. J Mater Chem A Mater 11(7):3471–3480. https://doi.org/10.1039/D2TA06102C

    Article  CAS  Google Scholar 

  16. Lepkova D, Batarjav A, Samuneva B, Ivanova LGY (1991) Preparation and properties of ceramics from magnesium spinel by sol-gel technology. J Mater Sci 26(4861):4864

    ADS  Google Scholar 

  17. Yuan Y, Zhang S, You W (2004) Synthesis of MgAl2O4 spinel nanometer powder via biology polysaccharide assisted sol-gel process. J Solgel Sci Technol 30:223–227

    Article  CAS  Google Scholar 

  18. Sanjabi S, Obeydavi A (2015) Synthesis and characterization of nanocrystalline MgAl2O4 spinel via modified sol–gel method. J Alloys Compd 645:535–540. https://doi.org/10.1016/j.jallcom.2015.05.107

    Article  CAS  Google Scholar 

  19. Zarazúa-Villalobos L, Téllez-Jurado L, Vargas-Becerril N, Fantozzi G, Balmori-Ramírez H (2015) Synthesis of magnesium aluminate spinel nanopowder by sol–gel and low-temperature processing. J Solgel Sci Technol 85(1):110–120. https://doi.org/10.1007/s10971-017-4526-5

    Article  CAS  Google Scholar 

  20. Khomidov FG, Kadyrova ZR, Usmanov KhL, Niyazova ShM, Sabirov BT (2021) Peculiarities of sol-gel synthesis of aluminum-magnesium spinel. Glass Ceram 78(5–6):251–254. https://doi.org/10.1007/s10717-021-00389-7

    Article  CAS  Google Scholar 

  21. Li J-G, Ikegami T, Lee J-H, Mori T, Yajima Y (2001) A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder. Ceram Int 27(4):481–489. https://doi.org/10.1016/S0272-8842(00)00107-3

    Article  CAS  Google Scholar 

  22. Zawrah MF, Hamaad H, Meky S (2007) Synthesis and characterization of nano MgAl2O4 spinel by the co-precipitated method. Ceram Int 33(6):969–978. https://doi.org/10.1016/j.ceramint.2006.02.015

    Article  CAS  Google Scholar 

  23. Wajler A, Tomaszewski H, Drożdż-Cieśla E, Węglarz H, Kaszkur Z (2008) Study of magnesium aluminate spinel formation from carbonate precursors. J Eur Ceram Soc 28(13):2495–2500. https://doi.org/10.1016/j.jeurceramsoc.2008.03.013

    Article  CAS  Google Scholar 

  24. Rashad MM, Zaki ZI, El-Shall H (2009) A novel approach for synthesis of nanocrystalline MgAl2O4 powders by co-precipitation method. J Mater Sci 44(11):2992–2998. https://doi.org/10.1007/s10853-009-3397-8

    Article  CAS  ADS  Google Scholar 

  25. Rufner J, Anderson D, van Benthem K, Castro RHR (2013) Synthesis and sintering behavior of ultrafine (<10 nm) magnesium aluminate spinel nanoparticles. J Am Ceram Soc 96(7):2077–2085. https://doi.org/10.1111/jace.12342

    Article  CAS  Google Scholar 

  26. Suyama Y, Kato A (1982) Characterization and sintering of Mg Al spinel prepared by spray-pyrolysis technique. Ceram Int 8(1):17–21. https://doi.org/10.1016/0272-8842(82)90010-4

  27. Bickmore CR, Waldner KF, Treadwell DR, Laine RM (1996) Ultrafine spinel powders by flame spray pyrolysis of a magnesium aluminum double alkoxide. J Am Ceram Soc 79(5):1419–1423. https://doi.org/10.1111/j.1151-2916.1996.tb08608.x

    Article  CAS  Google Scholar 

  28. Tong Y, Zhao S, Ma L, Zhao W, Song W, Yang H (2013) Facile synthesis and crystal growth dynamics study of MgAl2O4 nanocrystals. Mater Res Bull 48(11):4834–4838. https://doi.org/10.1016/j.materresbull.2013.08.039

    Article  CAS  Google Scholar 

  29. Sarkar R, Das S (2014) Auto combustion synthesis for magnesium aluminate spinel using glycine as fuel and its sintering study. Trans Indian Ceram Soc 73(2):172–176. https://doi.org/10.1080/0371750X.2014.922436

    Article  CAS  Google Scholar 

  30. Baruah B, Bhattacharyya S, Sarkar R (2023) Synthesis of magnesium aluminate spinel—an overview. Int J Appl Ceram Technol 20(3):1331–1349. https://doi.org/10.1111/ijac.14309

    Article  CAS  Google Scholar 

  31. Fiévet F, Brayner R (2013) “The polyol process”, in Nanomaterials: a danger or a promise? London Springer, London 1:25. https://doi.org/10.1007/978-1-4471-4213-3_1

    Article  Google Scholar 

  32. Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion 32–33(PART 1):198–205. https://doi.org/10.1016/0167-2738(89)90222-1

    Article  Google Scholar 

  33. Jézéquel D, Guenot J, Jouini N, Fiévet F (1995) Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics. J Mater Res 10(1):77–83. https://doi.org/10.1557/JMR.1995.0077

    Article  ADS  Google Scholar 

  34. Fiévet F et al (2018) The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem Soc Rev 47(14):5187–5233. https://doi.org/10.1039/C7CS00777A

    Article  PubMed  Google Scholar 

  35. Ahmed KM, McLeod MP, Nézivar J, Giuliani AW (2010) Fourier transform infrared and near-infrared spectroscopic methods for the detection of toxic diethylene glycol (DEG) contaminant in glycerin based cough syrup. Spectroscopy 24(6):601–608. https://doi.org/10.3233/SPE-2010-0482

    Article  CAS  Google Scholar 

  36. Shou-Yong J, Li-Bin L, Ning-Kang H, Jin Z, Yong L (2000) Investigation on lattice constants of Mg-Al spinels. J Mater Sci Lett 19(3):225–227. https://doi.org/10.1023/A:1006710808718

    Article  Google Scholar 

  37. Erukhimovitch V, Mordekoviz Y, Hayun S (2015) Spectroscopic study of ordering in non-stoichiometric magnesium aluminate spinel. Am Miner 100(8–9):1744–1751. https://doi.org/10.2138/am-2015-5266

    Article  ADS  Google Scholar 

Download references

Funding

This research has received support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—finance code 88887.464399/2019–00 and the Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil (CNPq)—finance code 313915/2021–0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Henrique Lopes Nunes Abreu dos Santos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes Nunes Abreu dos Santos, P.H., Ribeiro, S. Polyol-mediated synthesis and characterization of magnesium–aluminum spinel nanoparticles. J Nanopart Res 26, 37 (2024). https://doi.org/10.1007/s11051-024-05953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05953-0

Keywords

Navigation