Skip to main content
Log in

Performance enhancement of a planar perovskite solar cell with a PCE of 19.29% utilizing MoS\(_2\) 2D material as a hole transport layer: a computational study

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In recent years, there has been an exponential rush toward the optimization of solar cell (SC) performance utilizing novel materials. Overcoming the previous drawbacks of the SCs became possible through the special merits of the new materials, considering their high carrier mobility, environmental stability, and fabrication compatibility. In this study, two solar cell structures with Cs\(\varvec{_2}\)TiBr\(\varvec{_6}\) metal halide perovskite (PVK) as an absorber layer are proposed and compared. The proposed device structures utilize molybdenum disulfide (MoS\(\varvec{_2}\)), a 2D material with a thickness of 100 nm as a hole transport layer (HTL). (MoS\(\varvec{_2}\)) offers several useful properties such as high carrier mobility and great chemical and thermal stability. As a comparative result, two SC structures, TiO\(\varvec{_2}\)/Cs\(\varvec{_2}\)TiBr\(\varvec{_6}\)/MoS\(\varvec{_2}\)/PEDOT:PSS and TiO\(\varvec{_2}\)/Cs\(\varvec{_2}\)TiBr\(\varvec{_6}\)/MoS\(\varvec{_2}\), were investigated. The Solar Cell Capacitance Simulator in One Dimension (SCAPS-1D) is utilized to perform numerical simulations of the proposed SC structures. The simulation results indicate a power conversion efficiency (PCE) of 18.39% and 19.29% for the structure in the presence and absence of the PEDOT:PSS layer, respectively. This study investigated factors concerning absorber layer thickness, trap density, doping density, temperature, series resistance, and shunt resistance. Furthermore, the simulation results thoroughly scrutinized the nature of phenomena influencing the short-circuit current density (J\(\varvec{_{sc}}\)), open circuit voltage (V\(\varvec{_{oc}}\)), fill factor (FF), and PCE. The power conversion efficiency of the structure with an optimum 357.9-nm-thick absorber layer with only MoS\(\varvec{_2}\) as the HTL was 19.77%, while the device with a hybrid HTL has 18.78% efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in this paper and on a request from the corresponding author.

Abbreviations

\(N_A\) :

Acceptor doping density

\(N_D\) :

Donor doping density

\(\epsilon _r\) :

Relative permittivity

\(\chi _e\) :

Electron affinity

\(E_g\) :

Bandgap

\(\mu _n\) :

Electron mobility

\(\mu _p\) :

Hole mobility

\(N_C\) :

Conduction band density of states

\(N_V\) :

Valence band density of states

\(N_t\) :

Trap density

\(V_{th, e}\) :

Electron thermal velocity

\(V_{th,h}\) :

Hole thermal velocity

\(\psi \) :

Electrostatic potential

\(\rho _{def}\) :

Charge defect density

\(J_n\) :

Electron current density

\(J_p\) :

Hole current density

G :

Generation rate

R\(_n\) :

Recombination rate of electrons

R\(_p\) :

Recombination rate of holes

\(D_n\) :

Diffusion coefficient of electrons

\(D_p\) :

Diffusion coefficient of holes

\(\alpha \) :

Absorption coefficient

\(\phi _0\) :

Incident flux of photons

\(J_{SC}\) :

Short circuit current density

\(V_{OC}\) :

Open circuit voltage

SC :

Solar cell

PVK :

Perovskite

PCE :

Power conversion efficiency

FF :

Fill factor

ETL :

Electron transport layer

HTL :

Hole transport layer

PEDOT : PSS :

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate

P3HT :

Poly(3-hexylthiophene)

References

  1. Pysch D, Mette A, Glunz SW (2007) A review and comparison of different methods to determine the series resistance of solar cells. Sol Energy Mater Sol Cells 91(18):1698–1706

    Article  CAS  Google Scholar 

  2. Lee TD, Ebong AU (2017) A review of thin film solar cell technologies and challenges. Renew Sustain Energy Rev 70:1286–1297

    Article  CAS  Google Scholar 

  3. Correa-Baena JP, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W, Hagfeldt A (2017) Promises and challenges of perovskite solar cells. Science 358(6364):739–744

    Article  CAS  PubMed  Google Scholar 

  4. Fu Y, Zhu H, Chen J, Hautzinger MP, Zhu XY, Jin S (2019) Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat Rev Mater 4(3):169–188

    Article  CAS  Google Scholar 

  5. Teimouri R, Mehrvarz S, Ebrahimi A, Kolahdouz M, Darab M (2022) Performance of planar perovskite solar cells based on formamidinium cations: simulation and fabrication. Int J Energy Res 46(15):21948–21960

    Article  CAS  Google Scholar 

  6. Heydari Z, Madani M, Majidian-Taleghani N, Teimouri R, Kolahdouz M, Aghababa H, Asl-Soleimani E et al (2022) A comparative study of mixed halide perovskite thin film preparation by three-and two-step electrodeposition techniques. Opt Mater 123:111909

    Article  CAS  Google Scholar 

  7. Pandey R, Bhattarai S, Sharma K, Madan J, Al-Mousoi AK, Mohammed MK, Hossain MK (2023) Halide composition engineered a non-toxic perovskite–silicon tandem solar cell with 30.7% conversion efficiency. ACS Applied Electronic Materials

  8. Hasanzadeh Azar M, Aynehband S, Abdollahi H, Alimohammadi H, Rajabi N, Angizi S, Kamraninejad V, Teimouri R, Mohammadpour R, Simchi A (2023) SCAPS empowered machine learning modelling of perovskite solar cells: predictive design of active layer and hole transport materials. In: Photonics, vol 10. MDPI, p 271

  9. Elseman AM, Sajid S, Shalan AE, Mohamed SA, Rashad MM (2019) Recent progress concerning inorganic hole transport layers for efficient perovskite solar cells. Appl Phys A 125:1–12

    Article  CAS  Google Scholar 

  10. Rombach FM, Haque SA, Macdonald TJ (2021) Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy & Environmental Science 14(10):5161–5190

    Article  CAS  Google Scholar 

  11. Chin Y-C, Daboczi M, Henderson C, Luke J, Kim J-S (2022) Suppressing PEDOT: PSS doping-induced interfacial recombination loss in perovskite solar cells. ACS Energy Lett 7(2):560–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yaacobi-Gross N, Treat ND, Pattanasattayavong P, Faber H, Perumal AK, Stingelin N, Bradley DD, Stavrinou PN, Heeney M, Anthopoulos TD (2015) High-efficiency organic photovoltaic cells based on the solution-processable hole transporting interlayer copper thiocyanate (CUSCN) as a replacement for PEDOT: PSS. Adv Energy Mater 5(3):1401529

    Article  Google Scholar 

  13. Kurukavak ÇK, Polat S (2021) Influence of the volume of EGME-DMSO mixed co-solvent doping on the characteristics of PEDOT: PSS and their application in polymer solar cells. Polym Polym Compos 29(8):1222–1228

    CAS  Google Scholar 

  14. Yang D, Yang R, Priya S, Liu S (2019) Recent advances in flexible perovskite solar cells: fabrication and applications. Angew Chem Int Ed 58(14):4466–4483

    Article  CAS  Google Scholar 

  15. Tran H-CV, Jiang W, Lyu M, Chae H (2020) Tetrahydrofuran as solvent for P3HT/F4-TCNQ hole-transporting layer to increase the efficiency and stability of FAPbi3-based perovskite solar cell. The Journal of Physical Chemistry C 124(26):14099–14104

    Article  CAS  Google Scholar 

  16. Yaghoobi Nia N, Lamanna E, Zendehdel M, Palma AL, Zurlo F, Castriotta LA, Di Carlo A (2019) Doping strategy for efficient and stable triple cation hybrid perovskite solar cells and module based on poly (3-hexylthiophene) hole transport layer. Small 15(49):1904399

    Article  CAS  Google Scholar 

  17. Tumen-Ulzii G, Matsushima T, Adachi C (2021) Mini-review on efficiency and stability of perovskite solar cells with spiro-OMeTAD hole transport layer: recent progress and perspectives. Energy & Fuels 35(23):18915–18927

    Article  CAS  Google Scholar 

  18. Yang Q, Gong X, Qi X, Liu X, Liu C, Zhou Q, Sun Q, Shen Y, Wang M (2023) Hydrophobic polymer interlayer for highly efficient and stable perovskite solar cells. Chem Eng J 454:140430

    Article  CAS  Google Scholar 

  19. Wang Y, Duan L, Zhang M, Hameiri Z, Liu X, Bai Y, Hao X (2022) PTAA as efficient hole transport materials in perovskite solar cells: a review. Solar RRL 6(8):2200234

    Article  CAS  Google Scholar 

  20. Jones DM, An Y, Hidalgo J, Evans C, Vagott JN, Correa-Baena J-P (2021) Polymers and interfacial modifiers for durable perovskite solar cells: a review. Journal of Materials Chemistry C 9(37):12509–12522

    Article  CAS  Google Scholar 

  21. Teimouri R, Mohammadpour R (2018) Potential application of CuSbS2 as the hole transport material in perovskite solar cell: a simulation study. Superlattices Microstruct 118:116–122

    Article  CAS  Google Scholar 

  22. Teimouri R, Keshtmand R, Mehrvarz S, Ghasemi F, Mahjoory A, Kolahdouz M, Taghavinia N (2023) Enhancing planar perovskite solar cell performance by SnO2 interface treatment using urea as an additive: a comparative study of simple, low-temperature approaches. ACS Applied Electronic Materials

  23. Heshmati N, Mohammadi M, Abachi P, Martinez-Chapa S (2021) Low-cost air-stable perovskite solar cells by incorporating inorganic materials. New J Chem 45(2):788–795

    Article  CAS  Google Scholar 

  24. Sharma D, Mehra R, Raj B (2022) Optimization of tin based perovskite solar cell employing CuSbS2 as HTL: a numerical simulation approach. Opt Mater 134

  25. Ma Y, Vashishtha P, Shivarudraiah SB, Chen K, Liu Y, Hodgkiss JM, Halpert JE (2017) A hybrid perovskite solar cell modified with copper indium sulfide nanocrystals to enhance hole transport and moisture stability. Solar RRL 1(8):1700078

    Article  Google Scholar 

  26. Chen Y, Tang W, Wu Y, Yuan R, Yang J, Shan W, Zhang S, Zhang W-H (2020) Multilayer cascade charge transport layer for high-performance inverted mesoscopic all-inorganic and hybrid wide-bandgap perovskite solar cells. Solar RRL 4(10):2000344

    Article  CAS  Google Scholar 

  27. Sauer MO, Taghizadeh A, Petralanda U, Ovesen M, Thygesen KS, Olsen T, Cornean H, Pedersen TG (2023) Shift current photovoltaic efficiency of 2D materials. npj Computational Materials 9(1):35

    Article  CAS  Google Scholar 

  28. Sibatov RT, Meftakhutdinov RM, Kochaev AI (2022) Asymmetric xmosin2 (x= s, se, te) monolayers as novel promising 2D materials for nanoelectronics and photovoltaics. Appl Surf Sci 585

  29. You P, Tang G, Cao J, Shen D, Ng TW, Hawash Z, Wang N, Liu CK, Lu W, Tai Q, Qi Y (2021) 2D materials for conducting holes from grain boundaries in perovskite solar cells. Light: Science & Applications 10(1):68

    Article  CAS  Google Scholar 

  30. Mir SH, Yadav VK, Singh JK (2020) Recent advances in the carrier mobility of two-dimensional materials: a theoretical perspective. ACS Omega 5(24):14203–14211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chaves A, Azadani JG, Alsalman H, Costa DR, Frisenda R, Chaves AJ, Song SH, Kim YD, He D, Zhou J, Castellanos-Gomez A (2020) Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications 4(1):29

    Article  CAS  Google Scholar 

  32. Akinwande D, Brennan CJ, Bunch JS, Egberts P, Felts JR, Gao H, Huang R, Kim JS, Li T, Li Y, Liechti KM (2017) A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extreme Mechanics Letters 13:42–77

    Article  Google Scholar 

  33. Liu Z, You P, Xie C, Tang G, Yan F (2016) Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28:151–157

    Article  CAS  Google Scholar 

  34. Nassiri Nazif K, Daus A, Hong J, Lee N, Vaziri S, Kumar A, Nitta F, Chen ME, Kananian S, Islam R, Kim KH (2021) High-specific-power flexible transition metal dichalcogenide solar cells. nature Communications 12(1):7034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elbanna A, Chaykun K, Lekina Y, Liu Y, Febriansyah B, Li S, Pan J, Shen ZX, Teng J (2022) Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electronic Science 1(8):220006–1

    Article  CAS  Google Scholar 

  36. Li L, Kim J, Jin C, Ye GJ, Qiu DY, Jornada FH, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K (2017) Direct observation of the layer-dependent electronic structure in phosphorene. Nat Nanotechnol 12(1):21–25

    Article  PubMed  Google Scholar 

  37. Shivesh K, Alam I, Kushwaha AK, Kumar M, Singh SV (2022) Investigating the theoretical performance of Cs2TiBr6-based perovskite solar cell with La-doped BaSnO3 and CuSbS2 as the charge transport layers. Int J Energy Res 46(5):6045–6064

    Article  CAS  Google Scholar 

  38. Bhojak V, Bhatia D, Jain PK (2022) Investigation of photocurrent efficiency of Cs2TiBr6 double perovskite solar cell. Materials Today: Proceedings 66:3692–3697

    CAS  Google Scholar 

  39. Mahmood Q, Hassan M, Yousaf N, AlObaid AA, Al-Muhimeed TI, Morsi M, Albalawi H, Alamri OA (2022) Study of lead-free double perovskites halides Cs2Ticl6, and Cs2TiBr6 for optoelectronics, and thermoelectric applications. Mater Sci Semicond Process 137

  40. Euvrard J, Wang X, Li T, Yan Y, Mitzi DB (2020) Is Cs 2 TiBr 6 a promising Pb-free perovskite for solar energy applications? Journal of Materials Chemistry A 8(7):4049–4054

    Article  CAS  Google Scholar 

  41. He Y, Guo X, Zheng H, Xv L, Li S (2022) Stability investigation of the titanium-based eco-friendly perovskite-like antifluorite Cs 2 TiBr 6. Journal of Materials Chemistry C 10(24):9301–9309

    Article  CAS  Google Scholar 

  42. Mottakin M, Sarkar DK, Selvanathan V, Rashid MJ, Sobayel K, Hasan AM, Islam MA, Muhammad G, Shahiduzzaman M, Akhtaruzzaman M (2023) Photoelectric performance of environmentally benign Cs2TiBr6-based perovskite solar cell using spinel NiCo2o4 as HTL. Optik 272

  43. Zhang B, Song Z, Jin J, Bi W, Li H, Chen C, Dai Q, Xu L, Song H (2019) Efficient rare earth co-doped TiO2 electron transport layer for high-performance perovskite solar cells. J Colloid Interface Sci 553:14–21

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, Zhang H, Ren X, Zhu HL, Huang Z, Ye F, Ouyang D, Cheah KW, Jen AKY, Choy WC (2018) Thick TiO2-based top electron transport layer on perovskite for highly efficient and stable solar cells. ACS Energy Lett 3(12):2891–2898

    Article  CAS  Google Scholar 

  45. Teimouri R, Heydari Z, Ghaziani MP, Madani M, Abdy H, Kolahdouz M, Asl-Soleimani E (2020) Synthesizing Li doped TiO2 electron transport layers for highly efficient planar perovskite solar cell. Superlattices Microstruct 145

  46. Buffiere M, Ali K, Fares E, Samara A, Shetty AR, Al Hassan O, Belaidi A (2020) Inkjet-printed compact TiO2 electron transport layer for perovskite solar cells. Energ Technol 8(10):2000330

    Article  CAS  Google Scholar 

  47. Zhou C, Xi Z, Stacchiola DJ, Liu M (2022) Application of ultrathin TiO2 layers in solar energy conversion devices. Energy Science & Engineering 10(5):1614–1629

    Article  CAS  Google Scholar 

  48. Ahmad MS, Pandey AK, Abd Rahim N (2017) Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renew Sustain Energy Rev 77:89–108

    Article  Google Scholar 

  49. Agrawal A, Siddiqui SA, Soni A, Khandelwal K, Sharma GD (2021) Performance analysis of TiO2 based dye sensitized solar cell prepared by screen printing and doctor blade deposition techniques. Sol Energy 226:9–19

    Article  CAS  Google Scholar 

  50. Ma J, Bai H, Zhao W, Yuan Y, Zhang K (2018) High efficiency graphene/MoS2/Si Schottky barrier solar cells using layer-controlled MoS2 films. Sol Energy 160:76–84

    Article  CAS  Google Scholar 

  51. Liu Z, Liu K, Zhang F, Jain SM, He T, Jiang Y, Liu P, Yang J, Liu H, Yuan M (2020) CH3NH3PbI3: MoS2 heterostructure for stable and efficient inverted perovskite solar cell. Sol Energy 195:436–445

    Article  CAS  Google Scholar 

  52. Bandaru N, Kumar RS, Sneed D, Tschauner O, Baker J, Antonio D, Luo SN, Hartmann T, Zhao Y, Venkat R (2014) Effect of pressure and temperature on structural stability of MoS2. The Journal of Physical Chemistry C 118(6):3230–3235

    Article  CAS  Google Scholar 

  53. Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2012) Single-layer MoS2 phototransistors. ACS Nano 6(1):74–80

    Article  CAS  PubMed  Google Scholar 

  54. McClellan CJ, Yalon E, Smithe KK, Suryavanshi SV, Pop E (2021) High current density in monolayer MoS2 doped by AlOx. ACS Nano 15(1):1587–1596

    Article  CAS  PubMed  Google Scholar 

  55. Reza KM, Mabrouk S, Qiao Q (2018) A review on tailoring PEDOT: PSS layer for improved performance of perovskite solar cells. Proc Nat Res Soc 2(1):02004

    Article  Google Scholar 

  56. Patel PK (2021) Device simulation of highly efficient eco-friendly CH3NH3Snl3 perovskite solar cell. Sci Rep 11(1):3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sarker S, Islam MT, Rauf A, Al Jame H, Jani MR, Ahsan S, Islam MS, Nishat SS, Shorowordi KM, Ahmed S (2021) A SCAPS simulation investigation of non-toxic MAGel3-on-Si tandem solar device utilizing monolithically integrated (2-T) and mechanically stacked (4-T) configurations. Sol Energy 225:471–485

    Article  CAS  Google Scholar 

  58. Chakraborty K, Choudhury MG, Paul S (2019) Numerical study of Cs2TiX6. Sol Energy 194:886–892

    Article  CAS  Google Scholar 

  59. Wu F, Li H, Yao L, Lin W, Lin L, Chen W, Wei D, Liu S, Chen S, Chen G (2021) Optimization of lead-free perovskite solar cells in normal-structure with WO3 and water-free PEDOT: PSS composite for hole transport layer by SCAPS-1D simulation. Sol Energy 230:754–763

    Article  CAS  Google Scholar 

  60. Alipour H, Ghadimi A (2021) Optimization of lead-free perovskite solar cells in normal-structure with WO3 and water-free PEDOT: PSS composite for hole transport layer by SCAPS-1D simulation. Opt Mater 120

  61. Otoufi MK, Ranjbar M, Kermanpur A, Taghavinia N, Minbashi M, Forouzandeh M, Ebadi F (2020) Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: roles of the interfacial layers. Sol Energy 208:697–707

  62. Mabvuer FT, Nya FT, Dzifack Kenfack GM, Laref A (2023) Lowering cost approach for cigs-based solar cell through optimizing band gap profile and doping of stacked active layers - SCAPS modeling. ACS Omega

  63. Al Ahmed SR, Sunny A, Rahman S (2021) Performance enhancement of Sb2Se3 solar cell using a back surface field layer: a numerical simulation approach. Sol Energy Mater Sol Cells 221

  64. Sunny A, Ahmed SRA (2021) Numerical simulation and performance evaluation of highly efficient Sb2Se3 solar cell with tin sulfide as hole transport layer. Physica status solidi (b 258(7):2000630

    Article  CAS  Google Scholar 

  65. Hossain MK, Rubel MHK, Toki GI, Alam I, Rahman MF, Bencherif H (2022) Effect of various electron and hole transport layers on the performance of cspbi3-based perovskite solar cells: a numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks. ACS Omega 7(47):43210–43230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kumari R, Mamta M, Kumar R, Singh Y, Singh VN (2022) 24% Efficient, simple ZnSe/Sb2Se3 Heterojunction solar cell: an analysis of PV characteristics and defects. ACS omega

Download references

Acknowledgements

The authors would like to express their gratitude to Dr. Marc Burgelman and his colleagues at the Department of Electronics and Information Systems, University of Gent, Belgium for allowing us to conduct research through the SCAPS-1D program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Teimouri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahjoory, A., Karimi, K., Teimouri, R. et al. Performance enhancement of a planar perovskite solar cell with a PCE of 19.29% utilizing MoS\(_2\) 2D material as a hole transport layer: a computational study. J Nanopart Res 26, 46 (2024). https://doi.org/10.1007/s11051-024-05933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05933-4

Keywords

Navigation