Skip to main content
Log in

Studies of structural, dielectric, electrical, and optical properties of CaBiLaNbVO9 for electronic device application

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The solid-state reaction route created the lead-free dielectric material CaBiLaNbVO9 at a high temperature. The polycrystalline compound belongs to a monoclinic crystal structure having dimensions a = 10.6738 Å, b = 10.4488 Å, c = 7.1793 Å, and V = 798.04 Å3. The grain size is calculated to be 1.1029 µm. The doping of La3+ at the Bi-site and divalent cation Ca2+ substituted at site-A and Nb5+, V5+ in the site-B of ABO3 has considerably modified the structural, dielectric, and electrical conduction mechanism. The study of ac conductivity (frequency-temperature characteristics) shows CBH (correlated barrier hopping) and NSPT (non-overlapping small polaron tunneling) conduction mechanisms. Non-Debye type relaxation has been observed using impedance analysis. The modulus and impedance study have been used to confirm the short-range order of charge carriers. The average transmittance of the compound is about 82–84%, and absorption is in the range of 0.1–1.0% in the visible area applicable for transparent conductive oxide. The energy band gap is 2.73 eV. The analysis of the resistive and capacitive properties indicates the material is an electronic component for the creation of devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will available on reasonable request.

References

  1. Zanetti SM, Silva SAD (2007) Synthesis and characterization of bismuth zinc niobate pyrochlore nanopowders. Mater Res 10:261–266

    Article  CAS  Google Scholar 

  2. Hota SS, Panda D, Choudhary RNP (2024) Studies of structural, dielectric, conductivity, leakage current mechanism, and efficiency of complex electroceramic. Ceram Int 50(2):4031–4045

    Article  CAS  Google Scholar 

  3. Saleh S, Abdel-Latif I, Hakeem AA (2020) Structural and frequency-dependent dielectric properties of (SnO2)1–x(Fe2O3)x. J Nanopart Res 22:44. https://doi.org/10.1007/s11051-020-4763-3

    Article  CAS  Google Scholar 

  4. Dutta K, De SK (2007) Electrical conductivity and dielectric properties of SiO2 nanoparticles dispersed in conducting polymer matrix. J Nanopart Res 9:631–638. https://doi.org/10.1007/s11051-006-9184-4

    Article  CAS  Google Scholar 

  5. Rahman AU, Rafiq MA, Ul Hasan M et al (2013) Enhancement of electrical conductivity and dielectric constant in Sn-doped nanocrystlline CoFe2O4. J Nanopart Res 15:1703. https://doi.org/10.1007/s11051-013-1703-5

    Article  Google Scholar 

  6. Hota SS, Panda D, Choudhary RNP (2023) Fabrication and physical characteristics of K/W double doped BiFeO3 complex electro-ceramic;(Bi1/2K1/2)(Fe1/2W1/2) O3. J Alloys Compd 172900

  7. Panda D, Hota SS, Choudhary RNP (2023) Investigation of structural, microstructural, dielectric, and electrical characteristics of a new lead-free compound: Ca3Bi2MoO9. J Mater Sci Mater Electron 34(27):1908

  8. Panda D, Hota SS, Choudhary RNP (2023) Frequency and temperature dependence brownmillerite perovskite KBiFe2O5 for thermo-electronic application. In: 2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT). IEEE, pp 25–28

  9. Das SN, Pradhan SK, Bhuyan S et al (2017) Capacitive, resistive and conducting characteristics of bismuth ferrite and lead magnesium niobate based relaxor electronic system. J Mater Sci: Mater Electron 28:18913–18928

    CAS  Google Scholar 

  10. Hota SS, Panda D, Choudhary RNP (2023) Studies of structural, dielectric, electrical, and optical properties of a multi-doped novel complex perovskite (Bi1/2Na1/2)(Fe1/3Mn1/3W1/3) O3 ceramic for Opto-electronic application. Chin J Phys

  11. Das SN, Pradhan S, Bhuyan S, Choudhary RNP, Das P (2017) Modification of relaxor and impedance spectroscopy properties of lead magnesium niobate by bismuth ferrite. J Electron Mater 46:1637–1649

    Article  CAS  Google Scholar 

  12. Samara GA (2003) The relaxational properties of compositionally disordered ABO3 perovskites. J Phys Condens Matter 15(9):R367

    Article  CAS  Google Scholar 

  13. Rakesh M, Babu BN, Prakash AG, Prema NS, Gowda AC, Madhukar BS, ... Madhusudan P (2023) Fabrication of lead zirconate titanate-based polyvinylidene fluoride polymer nano-composites: microcrystalline, morphological and electrical studies. J Mater Sci Mater Electron 34(5):372

  14. Hota SS, Panda D, Choudhary RNP (2023) Studies on structural, dielectric, electrical, and ferroelectric properties of the polycrystalline: Sr3Bi2WO9. Ferroelectrics 617(1):113–126

    Article  CAS  Google Scholar 

  15. Chigari SS, Kumar V (2023) Ultrasonic radiation assisted synthesis of (CH3NH3) 2CuCl4, CH3NH3PbCl3, and CH3NH3SnCl3 perovskites for energy application. J Hazard Mater Adv 12:100368

    Article  CAS  Google Scholar 

  16. Abbas H, Khan MS, Ahmad S, Parvaz M, Khan MB, Khan A, Alshahrie A, Khan ZH (2022) Reduction of extrinsic defects in ZnSe: perovskite composites based solar devices. J Nanoparticle Res 24(12):270

    Article  CAS  Google Scholar 

  17. Panda D, Hota SS, Choudhary RNP (2023) Studies on structural, dielectric, electrical, and ferroelectric properties of the polycrystalline NaBiFe2O5. Ferroelectrics 617(1):101–112

    Article  CAS  Google Scholar 

  18. Kannan BR, Venkataraman BH (2016) Dielectric and electrical conductivity characteristics of undoped and samarium doped ferroelectric SrBi2Ta2O9 ceramics derived from molten salt synthesis route. Ferroelectrics 493(1):110–119

    Article  CAS  Google Scholar 

  19. Wu Y, Cao G (1999) Enhanced ferroelectric properties and lowered processing temperatures of strontium bismuth niobates with vanadium doping. Appl Phys Lett 75(17):2650–2652

    Article  CAS  Google Scholar 

  20. Venkataraman BH, Varma KBR (2005) The microstructural, dielectric, pyroelectric and ferroelectric properties of SrBi2 (Nb1-xVx) 2O9 (0≤ x≤ 0.3) ceramics. Ferroelectrics 315(1):45–60

    Article  CAS  Google Scholar 

  21. Verma M, Tanwar A, Sreenivas K (2018) Influence of lone pair on structural and electrical properties of Sb substituted Bismuth layered SrBi2Nb2O9 ceramics. Mater Chem Phys 209:159–164

    Article  CAS  Google Scholar 

  22. Khatun J, Adak MK, Dhak P, Ghorai UK, Dhak D (2019) Influence of La 3+ and V 5+ doping on the polarization and impedance behaviour of BaBi 2 Nb 2 O 9 nano-ceramics prepared by chemical route. J Mater Sci: Mater Electron 30:7065–7079

    CAS  Google Scholar 

  23. Luo X, Yan Z, Luo H, Zhou X, Li B, Zhang M, Zhang D (2023) Greatly improved piezoelectricity and thermal stability of (Na, Sm) Co-doped CaBi2Nb2O9 ceramics. Adv Powder Mater 2(3):100116

    Article  Google Scholar 

  24. Pan CB, Zhao GC, Li SM, Wang XL, Tao M, Yin LH, ... Sun YP (2023) Strong textured ferroelectric ceramics CaBi2Nb2O9 with superior piezoelectric response via conventional solid-state technique. J Eur Ceram Soc 43(15):6825–6832

  25. Huang S, Jiang X, Chen C, Nie X, Huang X, Wang H, Ye F, Huang H (2023) Structure and thermal stability investigations of (1–x) CaBi2Nb2O9-xNa0. 5Bi2. 5Nb2O9 ceramics. Ceram Int 49(11):17961–17968

    Article  CAS  Google Scholar 

  26. Long C, Wang B, Ren W, Zheng K, Fan H, Wang D, Liu L (2020) Significantly enhanced electrical properties in CaBi2Nb2O9-based high-temperature piezoelectric ceramics. Appl Phys Lett 117(3).

  27. Peng Z, Chen Li, Xiang Y, Cao F (2022) Microstructure and electrical properties of lanthanides-doped CaBi2Nb2O9 ceramics. Mater Res Bull 148:111670

    Article  CAS  Google Scholar 

  28. Altomare A, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R, Corriero N, Falcicchio A (2013) EXPO2013: a kit of tools for phasing crystal structures from powder data. J Appl Crystallogr 46(4):1231–1235

    CAS  Google Scholar 

  29. Mote VD, Purushotham Y, Dole BN (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:1–8

    Article  Google Scholar 

  30. Bhardwaj S, Paul J, Chand S, Raina KK, Kumar R (2014) Oxygen vacancy induced dielectric relaxation studies in Bi 4–x La x Ti 3 O 12 (x= 0.0, 0.3, 0.7, 1.0) ceramics. J Mater Sci: Mater Electron 25:4568–4576

    CAS  Google Scholar 

  31. Kumar N, Ghosh A, Choudhary RNP (2011) Electrical behavior of Pb(Zr0.52Ti0.48)0.5(Fe0.5 Nb0.5)0.5O3 ceramics. Mater Chem Phys. 130:381 Journal Pre-proof 27

  32. Raymond O, Font R, Suárez-Almodovar N, Portelles J, Siqueiros JM (2005) Frequencytemperature response of ferroelectromagnetic Pb(Fe1∕2Nb1∕2)O3 ceramics obtained by different precursors. Part I Structural and thermo-electrical characterization. J Appl Phys 97:084107

    Article  Google Scholar 

  33. Rhimi T, Leroy G, Duponchel B, Khirouni K, Guermazi S, Toumi M. Electrical conductivity and dielectric analysis of NaH2PO4 compound. Ionics https://doi.org/10.1007/s11581-018-2494-6

  34. Panda D, Hota SS, Choudhary RNP (2023) A brownmillerite electronic material LiBiFe2O5: structural, dielectric, electrical, and ferroelectric properties for device application. Ph Transit 96(11–12):822–839

    CAS  Google Scholar 

  35. Mahapatra T, Halder S, Bhuyan S et al (2018) Dielectric, resistive and conduction characteristics of lead-free complex perovskite electro-ceramic: (Bi1/2K1/2)(Zn1/2W1/2)O3. J Electron Mater 47:6663–6670

    Article  CAS  Google Scholar 

  36. Provenzano V, Boesch LP, Volterra V, Moynihan CT, Macedo PB (1972) Electrical relaxation in Na2O· 3SiO2 glass. J Am Ceram Soc 55(10):492–496

    CAS  Google Scholar 

  37. Hota SS, Panda D, Choudhary RNP (2023) Study of synthesis and characterization of triple ions modified bismuth ferrite for electronic devices:(Bi1/2Li1/2)(Fe1/3Mn1/3W1/3) O3. Solid State Ionics 399:116313

    Article  CAS  Google Scholar 

  38. Hota SS, Panda D, Choudhary RNP (2023) Sensitivity and accuracy of dielectric measurements of significantly improved coupled capacitive-dependent scheelite crystal. In: 2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT). IEEE, pp 1–6

  39. Panda D, Hota SS, Choudhary RNP (2023) Investigation of structural, topological, and electrical properties of scheelite strontium molybdate for electronic devices. Inorg Chem Commun 158:111501

    Article  CAS  Google Scholar 

  40. Amhil S, Essaleh L, Wasim SM, Marín G, Choukri E (2018) Low-temperature analysis of the electrical conduction with the NSPT mechanism in p-CuIn3Se5. Superlattice Microstruct 119:194–200 (Article CAS Google Scholar)

    Article  CAS  Google Scholar 

  41. Jacob R, Nair HG, Isac J (2015) Impedance spectroscopy and dielectric studies of nanocrystalline iron doped barium strontium titanate ceramics. Process Appl Ceram 9(2):73–79

    Google Scholar 

  42. Hajlaoui S, Chaabane I, Guidara K (2016) Conduction mechanism model, impedance spectroscopic investigation and modulus behavior of the organic-inorganic [(C3H7)4 N][SnCl5(H2O)]•2H2O compound. RSC Adv 6:91649–91657

    Article  CAS  Google Scholar 

  43. Stumpe R, Wagner D, Bauerle D (1983) Influence of bulk and interface properties on the electric transport in ABO3 perovskites. Phys Status Solidi (A) 75:143–154

    Article  CAS  Google Scholar 

  44. Panda B, Choudhary RNP (2022) Studies of structural, electrical, and dielectric properties of a new ferroelectric: SrTi2O5. J Mater Sci: Mater Electron 33(7):4104–4115

    CAS  Google Scholar 

  45. Liu J, Duan CG, Yin WG, Mei WN, Smith RW, Hardy JR (2003) Dielectric permittivity and electric modulus in Bi2Ti4O11. J Chem Phys 119(5):2812–2819

  46. Macdonald JR (1984) Note on the parameterization of the constant-phase admittance element. Solid State Ion 13(2):147–149

    Article  CAS  Google Scholar 

  47. Hirose N, West AR (1996) Impedance spectroscopy of undoped BaTiO3 ceramics. J Am Ceram Soc 79:1633–1641

    Article  CAS  Google Scholar 

  48. Macdonald R (1984) Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13(2):147–149

    Article  CAS  Google Scholar 

  49. Liu J, Duan C-G, Yin W-G, Mei WN, Smith RW, Hardy JR (2003) Dielectric permittivity and electric modulus in Bi2Ti4O11. J Chem Phys 119(5):2812–2819

    Article  CAS  Google Scholar 

  50. Kim JS (2001) Electric modulus spectroscopy of lithium tetraborate (Li2B4O7) single crystal. J Phys Soc Jpn 70:3129–3133

    Article  CAS  Google Scholar 

  51. Padhee R, Das RP, Parida BN, Choudhary RNP (2013) Electrical and pyroelectric properties of lanthanum based niobate. J Phys Chem Solids 74:377

    Article  CAS  Google Scholar 

  52. Cadiș AI, Rus FȘ, Gonçalves JN, Ivanovici M (2023) Preparing a Ca-Bi-O system by the precipitation method and studying its intermediate structural properties for applications in water treatment. Inorganics 11(2):79. https://doi.org/10.3390/inorganics11020079

    Article  CAS  Google Scholar 

  53. Ramaraghavulu R, Buddhudu S (2014) Structural and dielectric properties of BaBi2Nb2O9 ferroelectric ceramic powders by a solid state reaction method. Ferroelectrics 460(1):57–67

    Article  CAS  Google Scholar 

  54. Ji H, Liu D, Cheng H, Zhang C, Yang L, Ren D (2017) Infrared thermochromic properties of monoclinic VO 2 nanopowders using a malic acid-assisted hydrothermal method for adaptive camouflage. RSC Adv 7(9):5189–5194

    Article  CAS  Google Scholar 

  55. Lu YG, Yang YC, Ye ZX, Liu SY (2012) Preparation and visible light responsive photocatalytic activity of nitrogen-doped Bi2O3 phocatalyst. J Inorg Mater 6:643–648

    Article  Google Scholar 

  56. Mahi K, Mostefa R (2021) Structural and optical properties of MAl2O4 spinel-type prepared by solution combustion synthesis method for photocatalytic application. J Phys Sci 32(3)

  57. Thirumoorthi M, Prakash JTJ (2015) Structural, morphological characteristics and optical properties of Y doped ZnO thin films by sol–gel spin coating method. Superlattices Microstruct 85:237–247

    Article  CAS  Google Scholar 

  58. SA FSA, Al Marzouqi F, Ragamathunnisa M, AR MJ, Ayeshamariam A, Kaviyarasu K (2021) Synthesis and characterization of Bi2O3 NPS and photocatalytic application with methylene blue

  59. Zhang Weibin Wu, Weidong WX, Xinlu C, Dawei Y, Changle S, Liping P, Yuying W, Li B (2013) The investigation of NbO2 and Nb2O5 electronic structure by XPS, UPS and first principles methods. Surf Interface Anal 45(8):1206–1210

    Article  Google Scholar 

  60. Chen C, Xie J, Chen S, Li Y (2013) First principles calculations of electronic and optical properties of Zr-doped La2O3. Can J Phys 91(10):801–807

    Article  CAS  Google Scholar 

  61. Mohammed SF, Mohammad FM, Sahariya J, Mund HS, Bhamu KC, Ahuja BL (2013) Electronic structure of CaCO3: a Compton scattering study. Appl Radiat Isot 72:64–67

    Article  CAS  Google Scholar 

  62. Schneider K (2020) Optical properties and electronic structure of V2O5, V2O3 and VO2. J Mater Sci: Mater Electron 31:10478–10488. https://doi.org/10.1007/s10854-020-03596-0

    Article  CAS  Google Scholar 

  63. Gibbs ZM, LaLonde A, Snyder GJ (2013) Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. New J Phys 15(7):075020

    CAS  Google Scholar 

  64. Walsh A, Da Silva JL, Wei SH (2008) Origins of band-gap renormalization in degenerately doped semiconductors. Phys Rev B 78(7):075211

    Article  Google Scholar 

  65. Jonnalagadda M, Prasad VB, Raghu AV (2021) Synthesis of composite nanopowder through Mn doped ZnS-CdS systems and its structural, optical properties. J Mol Struct 1230:129875

    Article  CAS  Google Scholar 

  66. Mai M, Leschhorn A, Kliem H (2015) The field and temperature dependence of hysteresis loops in P (VDF–TrFE) copolymer films. Physica B 456:306–311

    Article  CAS  Google Scholar 

  67. Mukherjee A, Basu S, Manna PK, Yusuf SM, Pal M (2014) Giant magnetodielectric and enhanced multiferroic properties of Sm doped bismuth ferrite nanoparticles. J Mater Chem C 2(29):5885–5891

    Article  CAS  Google Scholar 

  68. Scott JF (1996) Models for the frequency dependence of coercive field and the size dependence of remanent polarization in ferroelectric thin films. Integr Ferroelectr 12(2–4):71–81

    Article  CAS  Google Scholar 

  69. Hussain A, Sinha N, Joseph AJ, Goel S, Kumar B (2018) Ferroelectric Sb-doped PMN-PT crystal: high electromechanical response with true-remanent polarization and resistive leakage analyses. J Mater Sci: Mater Electron 29(22):19567–19577

    CAS  Google Scholar 

  70. Hota SS, Panda D, Choudhary RNP (2023) Studies of structural, dielectric, and electrical properties of polycrystalline barium bismuth tungstate for thermistor application. Inorg Chem Commun 153:110785

    Article  Google Scholar 

  71. Hota SS, Panda D, Choudhary RNP (2023) Structural, topological, dielectric, and electrical properties of a novel calcium bismuth tungstate ceramic for some device applications. J Mater Sci: Mater Electron 34(10):900

    CAS  Google Scholar 

  72. Panda D, Hota SS, Choudhary RNP (2023) Development of a novel triple perovskite barium bismuth molybdate material for thermistor-based applications. Mater Sci Eng, B 296:116616

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would thank S ‘O’ A University, Bhubaneswar, for XRD facilities and OUAT, Bhubaneswar, India, for FTIR, UV-vis, and SEM characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umakant Prasad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work. In addition to the above, we have no conflict of interest with anybody except Paweł E. Tomaszewski.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The CaBiLaNbVO9 complex compound was synthesized by the solid-state reaction method and crystallized in the monoclinic symmetry.

• The surface micrograph shows that grains of various sizes and shapes have been uniformly scattered throughout the surface.

• High dielectric permittivity and minimal loss correspond to the device fabrication.

• The UV-visible spectrum analysis gives band gap energy of 2.73 eV showing the material used in optoelectronic devices.

• Negative temperature coefficient response relevant for NTC-thermistor and temperature-based sensors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Hota, S.S., Panda, D. et al. Studies of structural, dielectric, electrical, and optical properties of CaBiLaNbVO9 for electronic device application. J Nanopart Res 26, 10 (2024). https://doi.org/10.1007/s11051-023-05914-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05914-z

Keywords

Navigation