Skip to main content
Log in

Biomembrane-grafted dendrimer-polymeric conjugates for targeting p53—a pioneer innovation in cancer nanomedicine

  • Technology and Application
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Cancer remains a significant global health challenge, demanding innovative approaches to enhance the effectiveness and precision of therapies. In this pursuit, biomembrane-grafted dendrimer-polymeric conjugates have emerged as pioneering innovations within the field of cancer nanomedicine. These nanostructures represent a convergence of biology, materials science, and nanotechnology, offering a multifaceted platform with profound implications for cancer diagnosis and treatment. With precision drug delivery, they can transport therapeutics directly to cancer cells, minimizing systemic toxicity. Their utility extends to cancer imaging, enabling accurate visualization and monitoring of disease progression. Moreover, these conjugates facilitate personalized medicine by targeting specific genetic mutations, paving the way for tailored treatment approaches. Intriguingly, they hold promise in overcoming drug resistance by outsmarting efflux mechanisms and penetrating deep into tumor tissues. By combining multiple therapeutic agents, they enhance treatment efficacy through synergistic effects. This review delves into the intricacies of their design and the underlying mechanisms that govern their interactions within the tumor microenvironment. Furthermore, it highlights their potential to reshape cancer therapeutics by reducing side effects, inhibiting metastasis, and improving patient outcomes. As we navigate this innovative landscape, it becomes evident that biomembrane-grafted dendrimer-polymeric conjugates represent a powerful frontier in the battle against cancer, offering a beacon of hope for more effective and personalized treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zhang Z, Wang J, Chen C et al (2019) Biomimetic nanocarrier for direct cytosolic drug delivery. Angew Chem Int Ed 58(36):12404–12408

    Article  CAS  Google Scholar 

  2. Gao H, Zhang Q, Yu Z et al (2020) Biomimetic nanotherapies: red blood cell based core–shell structured nanocomplexes for atherosclerosis management. Adv Sci 7(17):2001391

    Google Scholar 

  3. Xiao W, Xiong J, Zhang S et al (2019) Biomimetic nanoparticles for inflammation targeting. Acta Pharmaceutica Sinica B 9(2):279–291

    Google Scholar 

  4. Wang Y, Zhang K, Li T et al (2018) Biomimetic nanosponges suppress in vivo lethality induced by the whole secreted proteins of pathogenic bacteria. Small 14(12):1702950

    Google Scholar 

  5. Huang X, Guo H, Wang L, Zhang Z, Zhang W (2023) Biomimetic cell membrane-coated nanocarriers for targeted siRNA delivery in cancer therapy. Drug Discov Today 28(4):103514

  6. Liu X, Xiao C, Xiao K (2023) Engineered extracellular vesicles-like biomimetic nanoparticles as an emerging platform for targeted cancer therapy. J Nanobiotechnol 21(1):287

    Article  Google Scholar 

  7. Zhang Y, Long Y, Wan J, Liu S, Shi A, Li D, Yu S, Li X, Wen J, Deng J, Ma Y (2023) Macrophage membrane biomimetic drug delivery system: for inflammation targeted therapy. J Drug Target 31(3):229–242

    Article  CAS  Google Scholar 

  8. Chen Y, Tao H, Chen R, Pan Y, Wang J, Gao R, Chen J, Yang J (2023) Biomimetic nanoparticles loaded with ulinastatin for the targeted treatment of acute pancreatitis. Mol Pharm 20(8):4108–4119

  9. Zhu L, Li H, Li J, Zhong Y, Wu S, Yan M, Ni S, Zhang K, Wang G, Qu K, Yang D (2023) Biomimetic nanoparticles to enhance the reverse cholesterol transport for selectively inhibiting development into foam cell in atherosclerosis. J Nanobiotechnol 21(1):1–22

    Article  Google Scholar 

  10. Uvyn A, Vleugels M, de Waal B, Hamouda AE, Dhiman S, Louage B, Albertazzi L, Laoui D, Meijer EW, De Geest BG Hapten/myristoyl functionalized poly (propylene imine) dendrimers as potent cell surface recruiters of antibodies for mediating innate immune killing. Adv Mater 35(47):2303909

  11. Gomathi T (2023) Nanobiotechnology and chemotherapy. Research Trends and Applications, Nanobiomaterials

    Google Scholar 

  12. Alshammari MK, Alshehri MM, Alshehri AM, Alshlali OM, Mahzari AM, Almalki HH, Kulaybi OY, Alghazwni MK, Kamal M, Imran M (2023) Camptothecin loaded nano-delivery systems in the cancer therapeutic domains: a critical examination of the literature. J Drug Deliv Sci Technol 79:104034

    Article  CAS  Google Scholar 

  13. Feng Y, Li X, Ji D, Tian J, Peng Q, Shen Y, Xiao Y (2023) Functionalised penetrating peptide-chondroitin sulphate-gold nanoparticles: synthesis, characterization, and applications as an anti-Alzheimer’s disease drug. Int J Biol Macromol 230:123125

    Article  CAS  Google Scholar 

  14. Zheng J, Jiang J, Pu Y, Xu T, Sun J, Zhang Q, He L, Liang X (2023) Tumor-associated macrophages in nanomaterial-based anti-tumor therapy: as target spots or delivery platforms. Front Bioeng Biotechnol 11:1248421

  15. Xu Y, Dong X, Xu H, Jiao P, Zhao LX, Su G (2023) Nanomaterial-based drug delivery systems for pain treatment and relief: from the delivery of a single drug to co-delivery of multiple therapeutics. Pharmaceutics 15(9):2309

    Article  CAS  Google Scholar 

  16. Matiyani M, Rana A, Pal M, Dokwal S, Sahoo NG (2023) Polyamidoamine dendrimer decorated graphene oxide as a pH-sensitive nanocarrier for the delivery of hydrophobic anticancer drug quercetin: a remedy for breast cancer. J Pharm Pharmacol. 75(6):859–72.

  17. Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W (2023) Platinum drug-incorporating polymeric nanosystems for precise cancer therapy. Small 19(21):2208241

  18. Dhull A, Yu C, Wilmoth AH, Chen M, Sharma A, Yiu S (2023) Dendrimers in corneal drug delivery: recent developments and translational opportunities. Pharmaceutics 15(6):1591

    Article  CAS  Google Scholar 

  19. Ma P, Wang Q, Luo X, Mao L, Wang Z, Ye E, Loh XJ, Li Z, Wu YL (2023) Recent advances of stimuli-responsive polymeric carriers for controllable CRISPR/Cas9 gene editing system delivery. Biomater Sci 11: 5078–5094

  20. Nair A, Javius-Jones K, Bugno J, Poellmann MJ, Mamidi N, Kim IS, Kwon IC, Hong H, Hong S (2023) Hybrid nanoparticle system integrating tumor-derived exosomes and poly (amidoamine) dendrimers: implications for an effective gene delivery platform. Chem Mater 35(8):3138–3150

    Article  CAS  Google Scholar 

  21. Căta A, Ienașcu IM, Ştefănuț MN, Roșu D, Pop OR (2023) Properties and bioapplications of amphiphilic Janus dendrimers: a review. Pharmaceutics 15(2):589

    Article  Google Scholar 

  22. Li DF, Liu QS, Yang MF, Xu HM, Zhu MZ, Zhang Y, Xu J, Tian CM, Yao J, Wang LS, Liang YJ (2023) Nanomaterials for mRNA-based therapeutics: challenges and opportunities. Bioeng Transl Med: 8(3):e10492

  23. Wang Q, Atluri K, Tiwari AK, Babu RJ (2023) Exploring the application of micellar drug delivery systems in cancer nanomedicine. Pharmaceuticals 16(3):433

    Article  CAS  Google Scholar 

  24. Poellmann MJ, Bu J, Liu S, Wang AZ, Seyedin SN, Chandrasekharan C, Hong H, Kim Y, Caster JM, Hong S (2023) Nanotechnology and machine learning enable circulating tumor cells as a reliable biomarker for radiotherapy responses of gastrointestinal cancer patients. Biosens Bioelectron 226:115117

    Article  CAS  Google Scholar 

  25. Vieira IR, Tessaro L, Lima AK, Velloso IP, Conte-Junior CA (2023) Recent progress in nanotechnology improving the therapeutic potential of polyphenols for cancer. Nutrients 15(14):3136

    Article  CAS  Google Scholar 

  26. Fatani WK, Aleanizy FS, Alqahtani FY, Alanazi MM, Aldossari AA, Shakeel F, Haq N, Abdelhady H, Alkahtani HM, Alsarra IA 2023. Erlotinib-loaded dendrimer nanocomposites as a targeted lung cancer chemotherapy. Molecules. 28(9):3974.

  27. Selianitis D, Sentoukas T, Skandalis A, Balafouti A, Pippa N, Pispas S (2023) Stimulus-responsive liposomes as smart nanocarriers for drug delivery applications. In: Novel Platforms for Drug Delivery Applications. Woodhead Publishing., pp 177–215

    Chapter  Google Scholar 

  28. Wu Y, Zhang J, He W, Li C, Wang Y (2023) Nanomaterials for targeting liver disease: research progress and future perspectives. Nano Biomed Eng 15(2):199–224

    Article  Google Scholar 

  29. Zhang R, Tang L, Wang Y, Tian Y, Wu S, Zhou B, Dong C, Zhao B, Yang Y, Xie D, Yang L (2023) A Dendrimer Peptide (KK2DP7) Delivery System with dual functions of lymph node targeting and immune adjuvants as a general strategy for cancer immunotherapy. Adv Sci 10(15):2300116

    Article  CAS  Google Scholar 

  30. Sudha PN, Utharkar S, Rao M, Ravi A, Vijayanand S, Sudha PN, Gomathi T, Pavithra S, Sugashini S, Hemapriya J (2023) Nanobiomaterials: Res Trends and Applications, Vol 5 CRC Press (United States)

  31. Xiang Z, Xu L, Wei X, Xu D, Xiong H, Chen S (2023) Bioaffinity recovery of linear CRGDS peptides grafted to Zwitterionic PAMAM nanocarriers. ACS Appl Nano Mater 6(8):6940–6952

    Article  CAS  Google Scholar 

  32. Barman S, Chakraborty A, Saha S, Sikder K, Maitra Roy S, Modi B, Bahadur S, Khan AH, Manna D, Bag P, Sarkar AK (2023) Efficient synergistic antibacterial activity of α-MSH using chitosan-based versatile nanoconjugates. ACS omega 8(14):12865–12877

    Article  CAS  Google Scholar 

  33. Paliya BS, Sharma VK, Sharma M, Diwan D, Nguyen QD, Aminabhavi TM, Rajauria G, Singh BN, Gupta VK (2023) Protein-polysaccharide nanoconjugates: potential tools for delivery of plant-derived nutraceuticals. Food Chem 428:136709

    Article  CAS  Google Scholar 

  34. Grimes PJ, Jenkinson-Finch M, Symons HE, Briscoe WH, Rochat S, Mann S, Gobbo P (2023) A photo-degradable crosslinker for the development of light-responsive protocell membranes. Chemistry–A Eur J 29(61):e202302058

  35. Wang X, Huang Y, Ren Y, Wang S, Li J, Lin Y, Chen H, Wang L, Huang X (2023) Biotic communities inspired proteinosome-based aggregation for enhancing utilization rate of enzyme. J Colloid Interface Sci 635:456–465

    Article  CAS  Google Scholar 

  36. Liu Y, Guo P, Dong X, Xu Y, Li D, Zheng H, Liao J (2023 Apr) Synchronized delivery of dual-drugs for potentiating combination chemotherapy based on smart triple-responsive polymeric micelles. Biomaterials Advances 1(147):213344

    Article  Google Scholar 

  37. Kumar R, Liu CC, Bendall SC, Angelo M (2023) Synthesis, characterization, and applications of a superior dendrimer-based polymer for multiplexed ion beam imaging time-of-flight analysis. Biomacromolecules 24(7):3105–3114

  38. Nandhabala S, Hemalatha J, Senthamil C, Sakthivel C, Nivetha A, Prabha I (2023) Effective Role of Polyamidoamine (PAMAM) Dendrimer functionalized nanomaterials in anticancer applications. ChemistrySelect 8(19):e202204490

    Article  CAS  Google Scholar 

  39. Zhang P, Li Z, Cao W, Tang J, Xia Y, Peng L, Ma J (2023) A PD-L1 antibody-conjugated PAMAM dendrimer nanosystem for simultaneously inhibiting glycolysis and promoting immune response in fighting breast cancer. Adv Mater 35(41):2305215

  40. Oledzka E, Paśnik K, Domańska I, Zielińska-Pisklak M, Piotrowska U, Sobczak M, Szeleszczuk Ł, Laskowska A (2023) Poly (amidoamine) Dendrimer/Camptothecin Complex: From Synthesis to In Vitro Cancer Cell Line Studies. Molecules.16;28(6):2696.

  41. Davodabadi F, Mirinejad S, Fathi-Karkan S, Majidpour M, Ajalli N, Sheervalilou R, Sargazi S, Rozmus D, Rahdar A, Diez-Pascual AM (2023) Aptamer-functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: a comprehensive overview of recent trends. Biotechnol Prog 39(5):e3366

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilpreet Singh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D. Biomembrane-grafted dendrimer-polymeric conjugates for targeting p53—a pioneer innovation in cancer nanomedicine. J Nanopart Res 25, 257 (2023). https://doi.org/10.1007/s11051-023-05909-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05909-w

Keywords

Navigation