Skip to main content
Log in

Arc discharge sputtering of NiO-C electrodes: Structure and magnetic properties of synthesized materials

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Plasma-chemical processes occurring during arc discharge sputtering of electrodes consisting of graphite and nickel oxide lead to the formation of a composite nanomaterial containing core–shell Ni@C nanoparticles. The structure of the formed material depends on the initial pressure in the reactor chamber. The smallest nickel nanoparticles with an average size of 3 nm are formed at a pressure of 12 Torr. The use of both lower 3 Torr and higher 100 Torr pressures results in the formation of larger nickel nanoparticles with average sizes of 5 and 9 nm, respectively. The proposed mechanism for the synthesis of Ni@C structures in the process of the arc discharge, including the stages of formation of a gas-plasma mixture, its outflow into the reactor chamber and cooling, processes of condensation, crystallization, and formation of nanoparticles, is considered. The structure of the material formed on a graphite substrate at various distances from the arc discharge axis was studied. It was established that larger nickel nanoparticles were formed at a closer distance, while the carbon component took the form of a graphene structure. With distance from the discharge, the size of the formed nickel nanoparticles decreased, and the graphene structure acquired a larger number of defects. Studies have showed that the synthesized materials, in terms of the mass content of nickel, had a specific magnetic susceptibility that exceeded the value for bulk metallic nickel. It was established that a decrease in the size of nickel nanoparticles led to an increase in the specific magnetic susceptibility of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang X, Sun L, Yu Y, Zhao Y (2019) Flexible ferrofluids: design and applications. Adv Mater 31:1903497. https://doi.org/10.1002/adma.201903497

    Article  CAS  Google Scholar 

  2. Stueber DD, Villanova J, Aponte I, Xiao Z, Colvin VL (2021) Magnetic nanoparticles in biology and medicine: past, present, and future trends. Pharmaceutics 13(7):943. https://doi.org/10.3390/pharmaceutics13070943

    Article  CAS  Google Scholar 

  3. Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P (2019) Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev 119:957–1057. https://doi.org/10.1021/acs.chemrev.8b00363

    Article  CAS  Google Scholar 

  4. Rizvi SA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 26:64–70. https://doi.org/10.1016/j.jsps.2017.10.012

    Article  Google Scholar 

  5. Silva PL, Savchuk OA, Gallo J, García-Hevia L, Bañobre-LópezM NJB (2020) Mapping intracellular thermal response of cancer cells to magnetic hyperthermia treatment. Nanoscale 12:21647–21656. https://doi.org/10.1039/C9NR10370H

    Article  CAS  Google Scholar 

  6. Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I (2021) Recent progress of magnetic nanoparticles in biomedical applications: a review. Nano Sel 2:1146–1186. https://doi.org/10.1002/nano.202000162

    Article  CAS  Google Scholar 

  7. Kianfar E (2021) Magnetic nanoparticles in targeted drug delivery: a review. J Supercond Nov Magn 34:1709–1735. https://doi.org/10.1007/s10948-021-05932-9

    Article  CAS  Google Scholar 

  8. Amiri M, Salavati-Niasari M, Akbari M (2019) Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv Colloid Interface Sci 265:29–44. https://doi.org/10.1016/j.cis.2019.01.003

    Article  CAS  Google Scholar 

  9. Aslam H, Shukrullah S, YasinNaz M, Fatima H, Hussain H, Ullah S, Assiri MA (2022) Current and future perspectives of multifunctional magnetic nanoparticles based controlled drug delivery systems. J Drug Deliv Sci Technol 67:102946. https://doi.org/10.1016/j.jddst.2021.102946

    Article  CAS  Google Scholar 

  10. Grill A (2003) Diamond-like carbon coatings as biocompatible materials—an overview. Diam Rel Mat 12(2):166–170. https://doi.org/10.1016/S0925-9635(03)00018-9

    Article  CAS  Google Scholar 

  11. Thomson LA, Law FC, Rushton N, Franks J (1991) Biocompatibility of diamond-like carbon coating. Biomaterials 12(1):37–40. https://doi.org/10.1016/0142-9612(91)90129-X

    Article  CAS  Google Scholar 

  12. Pinto AM, Gonçalves IS, Magalhães FD (2013) Graphene-based materials biocompatibility: a review. Colloids Surf B 111:188–202. https://doi.org/10.1016/j.colsurfb.2013.05.022

    Article  CAS  Google Scholar 

  13. Zhang X, Hao L, Wang H et al (2017) Preparation and characterization of superparamagnetic Fe3O4/CNTs nanocomposites dual-drug carrier. J Wuhan Univ Technol-Mat Sci Edit 32:42–46. https://doi.org/10.1007/s11595-017-1555-4

    Article  CAS  Google Scholar 

  14. Yan A, Lau BW, Weissman BS, Kulaots I, Yang NYC, Kane AB, Hurt RH (2006) Biocompatible, hydrophilic supramolecular carbon nanoparticles for cell delivery. AdvMater 18:2373–2378. https://doi.org/10.1002/adma.200600838

    Article  CAS  Google Scholar 

  15. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23(6):815–850. https://doi.org/10.1118/1.597854

    Article  CAS  Google Scholar 

  16. Novopashin SA, Serebryakova MA, Khmel SY (2015) Methods of magnetic fluid synthesis (review). Thermophys Aeromech 22:397–412. https://doi.org/10.1134/S0869864315040010

    Article  Google Scholar 

  17. Joseph A, Mathew S (2014) Ferrofluids: synthetic strategies, stabilization, physicochemical features, characterization, and applications. Chem Plus Chem 79(10):1382–1420. https://doi.org/10.1002/cplu.201402202

    Article  CAS  Google Scholar 

  18. Fang C, Nasir I, Xiaobing L, Zhenggui L, Shengnan Y, Hao F (2021) Size effect of Fe3O4 nanoparticles on magnetism and dispersion stability of magnetic nanofluid. Front Energy Res 9:780008. https://doi.org/10.3389/fenrg.2021.780008

    Article  Google Scholar 

  19. Li Q, Kartikowati CW, Horie S et al (2017) Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci Rep 7:9894. https://doi.org/10.1038/s41598-017-09897-5

    Article  CAS  Google Scholar 

  20. Sung Lee J, Myung Cha J, Young Yoon H et al (2015) Magnetic multi-granule nanoclusters: a model system that exhibits universal size effect of magnetic coercivity. Sci Rep 5:12135. https://doi.org/10.1038/srep12135

    Article  CAS  Google Scholar 

  21. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144. https://doi.org/10.1186/1556-276X-7-144

    Article  CAS  Google Scholar 

  22. Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater 308(2):289–295. https://doi.org/10.1016/j.jmmm.2006.06.003

    Article  CAS  Google Scholar 

  23. Liuv H, Li A, Ding X, Yang F, Sun K (2019) Magnetic induction heating properties of Mg1-xZnxFe2O4 ferrites synthesized by co-precipitation method. Solid State Sci 93:101–108. https://doi.org/10.1016/j.solidstatesciences.2019.05.005

    Article  CAS  Google Scholar 

  24. Zhang H, Zhu G (2012) One-step hydrothermal synthesis of magnetic Fe3O4 nanoparticles immobilized on polyamide fabric. Appl Surf Sci 258(11):4952–4959. https://doi.org/10.1016/j.apsusc.2012.01.127

    Article  CAS  Google Scholar 

  25. Kubíčková L, Koktan J, Kořínková T, Klementová M, Kmječ T, Kohout J, Weidenkaff A, Kaman O (2020) Zn-substituted iron oxide nanoparticles from thermal decomposition and their thermally treated derivatives for magnetic solid-phase extraction. J Magn Magn Mater 498:166083. https://doi.org/10.1016/j.jmmm.2019.166083

    Article  CAS  Google Scholar 

  26. Lee YJ, Kim K, Shin IS et al (2020) Antioxidative metallic copper nanoparticles prepared by modified polyol method and their catalytic activities. J Nanopart Res 22:1–8. https://doi.org/10.1007/s11051-019-4727-7

    Article  CAS  Google Scholar 

  27. Zaikovskii AV, Iurchenkova AA, Kozlachkov DV, Fedorovskaya EO (2021) Effects of Tin on the morphological and electrochemical properties of arc-discharge nanomaterials. JOM 73:847–855. https://doi.org/10.1007/s11837-020-04556-z

    Article  CAS  Google Scholar 

  28. Zaikovskii AV, Kardash TY, Kolesov BA, Nikolaeva OA (2019) Graphene, SiC and Si nanostructures synthesis during quartz pyrolysis in arc-discharge plasma. Phys Stat Sol A 216:1900079. https://doi.org/10.1002/pssa.201900079

    Article  CAS  Google Scholar 

  29. Zaikovskii A, Yudin I, Kozlachkov D, Nartova A, Fedorovskaya E (2022) Gas pressure control of electric arc synthesis of composite Sn-SnO2-C nanomaterials. Vacuum 195:110694. https://doi.org/10.1016/j.vacuum.2021.110694

    Article  CAS  Google Scholar 

  30. Zaikovskii A, Ukhina A, Mateyshina Y (2022) Electric arc synthesis of composite Ni-C, NiO-C nanomaterials: structure and electrochemical properties. Phys Stat Sol A 219:2200111. https://doi.org/10.1002/pssa.202200111

    Article  CAS  Google Scholar 

  31. Kundrapu M, Keidar M (2012) Numerical simulation of carbon arc discharge for nanoparticle synthesis. Phys Plasmas 19(7):073510. https://doi.org/10.1063/1.4737153

    Article  CAS  Google Scholar 

  32. Langmuir I (1932) Evaporation, condensation and adsorption. J Am ChemSoc 54(7):2798–2832. https://doi.org/10.1021/ja01346a022

    Article  CAS  Google Scholar 

  33. Alekseyev NI, Dyuzhev GA (2008) Fullerene formation in an arc discharge. Carbon 41(7):1343–1348. https://doi.org/10.1016/S0008-6223(03)00058-7

    Article  CAS  Google Scholar 

  34. Sukhinin GI, Nerushev OA (1997) A model for the formation of fullerenes in carbon vapor. J Appl Mech Tech Phys 38:625–637. https://doi.org/10.1007/BF02468108

    Article  CAS  Google Scholar 

  35. Zaikovskii A, Novopashin S, Maltsev V, Kardash T, Shundrina I (2019) Tin-carbon nanomaterial formation in a helium atmosphere during arc-discharge. RSC Adv 9:36621–36630. https://doi.org/10.1039/C9RA05485E

    Article  CAS  Google Scholar 

  36. Magnin Y, Zappelli A, Amara H, Ducastelle F, Bichara C (2015) Size dependent phase diagrams of nickel-carbon nanoparticles. Phys Rev Let 115(20):205502. https://doi.org/10.1103/physrevlett.115.205502

    Article  CAS  Google Scholar 

  37. Zaikovskii AV, Novopashin SA (2017) Electroconductive and magnetic properties of pure carbon soot produced in arc discharge: regimes of various buffer gas pressure. Phys Stat Sol A 214:1700142. https://doi.org/10.1002/pssa.201700142

    Article  CAS  Google Scholar 

  38. Owens FJ, Iqbal Z, Belova L, Rao KV (2004) Evidence for high-temperature ferromagnetism in photolyzed C60. Phys Rev B 69:033403. https://doi.org/10.1103/PhysRevB.69.033403

    Article  CAS  Google Scholar 

  39. G de Oteyza D, Frederiksen T (2022) Carbon-based nanostructures as a versatile platform for tunable π-magnetism. J Phys Condens Matter 34(44):35977474.https://doi.org/10.1088/1361-648X/ac8a7f

  40. Ranade V, Gautam S, Chae KH (2023) Magnetism in carbon-based fiber materials. J Magn Magn Mater 586:171210. https://doi.org/10.1016/j.jmmm.2023.171210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CCU VTAN NSU for caring out of transmission electron microscopy. The authors also acknowledge Kutateladze Institute of Thermophysics for the usage of the unique scientific equipment “Vacuum Gasdynamic Complex” for arc discharge synthesis of the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Zaikovsky.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaikovsky, A., Leonov, N. & Ukhina, A. Arc discharge sputtering of NiO-C electrodes: Structure and magnetic properties of synthesized materials. J Nanopart Res 25, 252 (2023). https://doi.org/10.1007/s11051-023-05907-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05907-y

Keywords

Navigation