Skip to main content
Log in

Highly sensitive fluorescent probe for mesotrione based on nitrogen and sulfur co-doped graphene quantum dots

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Mesotrione is considered as an effective triketone herbicide for the control of major broadleaf grasses and some Gramineae weeds. However, over-application of mesotrione poses significant environmental and ecological hazards. The development of a mesotrione fluorescent sensor is essential for detecting mesotrione. A novel fluorescent probe (nitrogen and sulfur co-doped graphene quantum dots (N, S-GQDs)) was designed for the rapid analysis of mesotrione in real water samples. N, S-GQDs synthesized by pyrolytic carbonation have the multilayer graphene structure with the size range of 9.8–29.1 nm, the average size of 19.2 nm, and the average height of 9.7 nm. The fluorescent probe was capable of emitting high-intensity fluorescence. And when mesotrione was mixed with the fluorescent probe, the fluorescence of the probe was rapidly quenched by static quenching and the internal filter effect. The fluorescent probe provided great sensitivity and selectivity in the linear range of 0.5–15 and 15–700 μM for the detection of mesotrione with the detection limit (LOD) of 0.26 μM. Noticeably, real sample tests illustrated the use of the fluorescent probe for mesotrione was a promising strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the Corresponding author upon reasonable request.

References

  1. He B, Hu Y, Wang W, Yan W, Ye Y (2022) The progress towards novel herbicide modes of action and targeted herbicide development. Agronomy 12:2792. https://doi.org/10.3390/agronomy12112792

    Article  CAS  Google Scholar 

  2. Choudri BS, Charabi Y (2019) Pesticides and herbicides. Water Environ Res 91:1342–1349. https://doi.org/10.1002/wer.1227

    Article  CAS  Google Scholar 

  3. Norsworthy JK, Varanasi VK, Bagavathiannan M, Brabham C (2021) Recurrent selection with sub-lethal doses of mesotrione reduces sensitivity in Amaranthus palmeri. Plants (Basel) 10:1293. https://doi.org/10.3390/plants10071293

    Article  CAS  Google Scholar 

  4. Dai S, Georgelis N, Bedair M, Hong YJ, Qi Q, Larue CT, Sitoula B, Huang W, Krebel B, Shepard M, Su W, Kretzmer K, Dong J, Slewinski T, Berger S, Ellis C, Jerga A, Varagona M (2022) Ectopic expression of a rice triketone dioxygenase gene confers mesotrione tolerance in soybean. Pest Manag Sci 78:2816–2827. https://doi.org/10.1002/ps.6904

    Article  CAS  Google Scholar 

  5. Pintar A, Stipicevic S, Svecnjak Z, Baric K, Lakic J, Sraka M (2020) Crop sensitivity to mesotrione residues in two soils: field and laboratory bioassays. Chil J Agr Res 80:496–504. https://doi.org/10.4067/s0718-58392020000400496

    Article  Google Scholar 

  6. Gervais G, Brosillon S, Laplanche A, Helen C (2008) Ultra-pressure liquid chromatography-electrospray tandem mass spectrometry for multiresidue determination of pesticides in water. J Chromatogr A 1202:163–172. https://doi.org/10.1016/j.chroma.2008.07.006

    Article  CAS  Google Scholar 

  7. Lee YJ, Rahman MM, Abd El-Aty AM, Choi JH, Chung HS, Kim SW, Abdel-Aty AM, Shin HC, Shim JH (2016) Detection of three herbicide, and one metabolite, residues in brown rice and rice straw using various versions of the QuEChERS method and liquid chromatography-tandem mass spectrometry. Food Chem 210:442–450. https://doi.org/10.1016/j.foodchem.2016.05.005

    Article  CAS  Google Scholar 

  8. Mullen AK, Clench MR, Crosland S, Sharples KR (2005) Determination of agrochemical compounds in soya plants by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Sp 19:2507–2516. https://doi.org/10.1002/rcm.2078

    Article  CAS  Google Scholar 

  9. Mastichiadis C, Christofidis I, Koupparis MA, Willetts C, Kakabakos SE (2003) Solid-phase fluoroimmunoassay for the determination of mesotrione–a novel triketone herbicide–in water with direct measurement of the fluorescence onto the solid support. Analyst 128:404–410. https://doi.org/10.1039/b210419a

    Article  CAS  Google Scholar 

  10. Mastichiadis C, Kakabakos SE, Christofidis I, Koupparis MA, Willetts C, Misiakos K (2002) Simultaneous determination of pesticides using a four-band disposable optical capillary immunosensor. Anal Chem 74:6064–6072. https://doi.org/10.1021/ac020330x

    Article  CAS  Google Scholar 

  11. Rodrigues LF, Ierich JCM, Andrade MA, Hausen MA, Leite FL, Moreau ALD, Steffens C (2017) Nanomechanical cantilever-based sensor: an efficient tool to measure the binding between the herbicide mesotrione and 4-hydroxyphenylpyruvate dioxygenase. NANO 12:1750079. https://doi.org/10.1142/s1793292017500795

    Article  CAS  Google Scholar 

  12. Wagh SB, Maslivetc VA, La Clair JJ, Kornienko A (2021) Lessons in organic fluorescent probe discovery. ChemBioChem 22:3109–3139. https://doi.org/10.1002/cbic.202100171

    Article  CAS  Google Scholar 

  13. Liu Q, Huang J, He L, Yang X, Yuan L, Cheng D (2022) Molecular fluorescent probes for liver tumor imaging. Chem Asian J 17:e202200091. https://doi.org/10.1002/asia.202200091

    Article  CAS  Google Scholar 

  14. Safari M, Najafi S, Arkan E, Amani S, Shahlaei M (2019) Facile aqueous synthesis of Ni-doped CdTe quantum dots as fluorescent probes for detecting pyrazinamide in plasma. Microchem J 146:293–299. https://doi.org/10.1016/j.microc.2019.01.019

    Article  CAS  Google Scholar 

  15. Chinnathambi S, Shirahata N (2019) Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci Technol Adv Mater 20:337–355. https://doi.org/10.1080/14686996.2019.1590731

    Article  CAS  Google Scholar 

  16. Bi X, Li L, Luo L, Liu X, Li J, You T (2022) A ratiometric fluorescence aptasensor based on photoinduced electron transfer from CdTe QDs to WS2 NTs for the sensitive detection of zearalenone in cereal crops. Food Chem 385:132657. https://doi.org/10.1016/j.foodchem.2022.132657

    Article  CAS  Google Scholar 

  17. Nguyen AVT, Dao TD, Trinh TTT, Choi D-Y, Yu S-T, Park H, Yeo S-J (2020) Sensitive detection of influenza a virus based on a CdSe/CdS/ZnS quantum dot-linked rapid fluorescent immunochromatographic test. Biosens Bioelectron 155:112090. https://doi.org/10.1016/j.bios.2020.112090

    Article  CAS  Google Scholar 

  18. Li X, Deng L, Ma F, Yang M (2020) A luminous off-on probe for the determination of 2,6-pyridinedicarboxylic acid as an anthrax biomarker based on water-soluble cadmium sulfide quantum dots. Microchim Acta 187:287. https://doi.org/10.1007/s00604-020-04272-0

    Article  CAS  Google Scholar 

  19. Arvand M, Mirroshandel AA (2017) Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Biosens Bioelectron 96:324–331. https://doi.org/10.1016/j.bios.2017.05.028

    Article  CAS  Google Scholar 

  20. Zheng P, Wu N (2017) Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chem-Asian J 12:2343–2353. https://doi.org/10.1002/asia.201700814

    Article  CAS  Google Scholar 

  21. Qian ZS, Shan XY, Chai LJ, Chen JR, Feng H (2015) A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens Bioelectron 68:225–231. https://doi.org/10.1016/j.bios.2014.12.057

    Article  CAS  Google Scholar 

  22. Yang Y, Gu B, Liu Z, Chen D, Zhao Y, Guo Q, Wang G (2021) Hydrothermal synthesis of N, P co-doped graphene quantum dots for high-performance Fe3+ detection and bioimaging. J Nanopart Res 23:40. https://doi.org/10.1007/s11051-021-05154-z

    Article  CAS  Google Scholar 

  23. Hosseini M, Khabbaz H, Dezfoli AS, Ganjali MR, Dadmehr M (2015) Selective recognition of Glutamate based on fluorescence enhancement of graphene quantum dot. Spectrochim Acta A 136:1962–1966. https://doi.org/10.1016/j.saa.2014.10.117

    Article  CAS  Google Scholar 

  24. Ruiyi L, Huahua Z, Zaijun L (2022) Switchable two-color graphene quantum dot as a promising fluorescence probe to highly sensitive pH detection and bioimaging. Spectrochim Acta A 275:121028. https://doi.org/10.1016/j.saa.2022.121028

    Article  CAS  Google Scholar 

  25. Hung LX, Yen NH, Hue TT, Thuan DN, Thang PN, Hanh VTH, Nhung VC, Laverdant J, Huong NTM, Nga PT (2022) Fabrication and optical properties of sulfur- and nitrogen-doped graphene quantum dots by the microwave–hydrothermal approach. J Nanopart Res 24:206. https://doi.org/10.1007/s11051-022-05579-0

    Article  CAS  Google Scholar 

  26. Wang C, Chen D, Yang Y, Tang S, Li X, Xie F, Wang G, Guo Q (2021) Synthesis of multi-color fluorine and nitrogen co-doped graphene quantum dots for use in tetracycline detection, colorful solid fluorescent ink, and film. J Colloid Interf Sci 602:689–698. https://doi.org/10.1016/j.jcis.2021.06.062

    Article  CAS  Google Scholar 

  27. Du F, Zeng Q, Lai Z, Cheng Z, Ruan G (2019) Silicon doped graphene quantum dots combined with ruthenium(iii) ions as a fluorescent probe for turn-on detection of triclosan. New J Chem 43:12907–12915. https://doi.org/10.1039/C9NJ03046H

    Article  CAS  Google Scholar 

  28. Wang W, Xu S, Li N, Huang Z, Su B, Chen X (2019) Sulfur and phosphorus co-doped graphene quantum dots for fluorescent monitoring of nitrite in pickles. Spectrochim Acta A 221:117211. https://doi.org/10.1016/j.saa.2019.117211

    Article  CAS  Google Scholar 

  29. Xia C, Hai X, Chen X-W, Wang J-H (2017) Simultaneously fabrication of free and solidified N, S-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection. Talanta 168:269–278. https://doi.org/10.1016/j.talanta.2017.03.040

    Article  CAS  Google Scholar 

  30. Chaghaghazardi M, Kashanian S, Nazari M, Omidfar K, Joseph Y, Rahimi P (2023) Nitrogen and sulfur co-doped carbon quantum dots fluorescence quenching assay for detection of mercury (II). Spectrochim Acta A 293:122448. https://doi.org/10.1016/j.saa.2023.122448

    Article  CAS  Google Scholar 

  31. Tang X, Yu H, Bui B, Wang L, Xing C, Wang S, Chen M, Hu Z, Chen W (2021) Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact Mater 6:1541–1554. https://doi.org/10.1016/j.bioactmat.2020.11.006

    Article  CAS  Google Scholar 

  32. Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xie Z, Sun Z (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5:12272–12277. https://doi.org/10.1039/C3NR04402E

    Article  CAS  Google Scholar 

  33. Yang Y, Xing X, Zou T, Wang Z, Zhao R, Hong P, Peng S, Zhang X, Wang Y (2020) A novel and sensitive ratiometric fluorescence assay for carbendazim based on N-doped carbon quantum dots and gold nanocluster nanohybrid. J Hazard Mater 386:121958. https://doi.org/10.1016/j.jhazmat.2019.121958

    Article  CAS  Google Scholar 

  34. Yang Y, Wei Q, Zou T, Kong Y, Su L, Ma D, Wang Y (2020) Dual-emission ratiometric fluorescent detection of dinotefuran based on sulfur-doped carbon quantum dots and copper nanocluster hybrid. Sensor Actuat B-Chem 321:128534. https://doi.org/10.1016/j.snb.2020.128534

    Article  CAS  Google Scholar 

  35. Liu Z, Mo Z, Niu X, Yang X, Jiang Y, Zhao P, Liu N, Guo R (2020) Highly sensitive fluorescence sensor for mercury(II) based on boron- and nitrogen-co-doped graphene quantum dots. J Colloid Interface Sci 566:357–368. https://doi.org/10.1016/j.jcis.2020.01.092

    Article  CAS  Google Scholar 

  36. Khose RV, Chakraborty G, Bondarde MP, Wadekar PH, Ray AK, Some S (2021) Red-fluorescent graphene quantum dots from guava leaf as a turn-off probe for sensing aqueous Hg(ii). New J Chem 45:4617–4625. https://doi.org/10.1039/D0NJ06259F

    Article  CAS  Google Scholar 

  37. Kadian S, Manik G (2020) Sulfur doped graphene quantum dots as a potential sensitive fluorescent probe for the detection of quercetin. Food Chem 317:126457. https://doi.org/10.1016/j.foodchem.2020.126457

    Article  CAS  Google Scholar 

  38. Kurniawan D, Chiang W-H (2020) Microplasma-enabled colloidal nitrogen-doped graphene quantum dots for broad-range fluorescent pH sensors. Carbon 167:675–684. https://doi.org/10.1016/j.carbon.2020.05.085

    Article  CAS  Google Scholar 

  39. He Y-S, Pan C-G, Cao H-X, Yue M-Z, Wang L, Liang G-X (2018) Highly sensitive and selective dual-emission ratiometric fluorescence detection of dopamine based on carbon dots-gold nanoclusters hybrid. Sensor Actuat B-Chem 265:371–377. https://doi.org/10.1016/j.snb.2018.03.080

    Article  CAS  Google Scholar 

  40. Li L, Gao S, Yang L, Liu Y-L, Li P, Ye F, Fu Y (2021) Cobalt (II) complex as a fluorescent sensing platform for the selective and sensitive detection of triketone HPPD inhibitors. J Hazard Mater 404:124015. https://doi.org/10.1016/j.jhazmat.2020.124015

    Article  CAS  Google Scholar 

  41. Muhammad M, Khan S, Fayaz H (2021) Charge-transfer complex-based spectrophotometric method for the determination of mesotrione in environmental samples. Environ Monit Assess 193:681. https://doi.org/10.1007/s10661-021-09432-0

    Article  CAS  Google Scholar 

  42. Liu Y, Li L, Yue M, Yang L, Sun F, Xu G, Fu Y, Ye F (2022) A switch-on fluorescent probe for detection of mesotrione based on the straightforward cleavage of carbon-nitrogen double bond of Schiff base. Chem Eng J 430:132758. https://doi.org/10.1016/j.cej.2021.132758

    Article  CAS  Google Scholar 

  43. Hdiouech S, Bruna F, Batisson I, Besse-Hoggan P, Prevot V, Mousty C (2019) Amperometric detection of the herbicide mesotrione based on competitive reactions at nitroreductase@layered double hydroxide bioelectrode. Electroanal Chem 835:324–328. https://doi.org/10.1016/j.jelechem.2019.01.054

    Article  CAS  Google Scholar 

  44. Deroco PB, Lourencao BC, Fatibello-Filho O (2017) The use of modified electrode with carbon black as sensor to the electrochemical studies and voltammetric determination of pesticide mesotrione. Microchem J 133:188–194. https://doi.org/10.1016/j.microc.2017.03.024

    Article  CAS  Google Scholar 

  45. Fu F, Zhang Y, Li L, Wang H, Li Q, Tao X, Song Y, Song E (2020) Intracellular pathogen detection based on dual-recognition units constructed fluorescence resonance energy transfer nanoprobe. Anal Chem 92:11462–11468. https://doi.org/10.1021/acs.analchem.0c02695

    Article  CAS  Google Scholar 

  46. Gu W, Pei X, Cheng Y, Zhang C, Zhang J, Yan Y, Ding C, Xian Y (2017) Black phosphorus quantum dots as the ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect. ACS Sens 2:576–582. https://doi.org/10.1021/acssensors.7b00102

    Article  CAS  Google Scholar 

  47. Xue S, Jiang XF, Zhang G, Wang H, Li Z, Hu X, Chen M, Wang T, Luo A, Ho HP, He S, Xing X (2020) Surface plasmon-enhanced optical formaldehyde sensor based on CdSe@ZnS quantum dots. ACS Sens 5:1002–1009. https://doi.org/10.1021/acssensors.9b02462

    Article  CAS  Google Scholar 

  48. Shen Y, Wu T, Wang Y, Zhang SL, Zhao X, Chen HY, Xu JJ (2021) Nucleolin-targeted ratiometric fluorescent carbon dots with a remarkably large emission wavelength shift for precise imaging of cathepsin B in living cancer cells. Anal Chem 93:4042–4050. https://doi.org/10.1021/acs.analchem.0c05046

    Article  CAS  Google Scholar 

  49. Qian J, Cui H, Lu X, Wang C, An K, Hao N, Wang K (2020) Bi-color FRET from two nano-donors to a single nano-acceptor: a universal aptasensing platform for simultaneous determination of dual targets. Chem Eng J 401:126017. https://doi.org/10.1016/j.cej.2020.126017

    Article  CAS  Google Scholar 

  50. Bi X, Li L, Liu X, Luo L, Cheng Z, Sun J, Cai Z, Liu J, You T (2021) Inner filter effect-modulated ratiometric fluorescence aptasensor based on competition strategy for zearalenone detection in cereal crops: using mitoxantrone as quencher of CdTe QDs@SiO2. Food Chem 349:129171. https://doi.org/10.1016/j.foodchem.2021.129171

    Article  CAS  Google Scholar 

  51. Xu S, Chen L, Ma L (2018) Fluorometric determination of quercetin by using graphitic carbon nitride nanoparticles modified with a molecularly imprinted polymer. Microchim Acta 185:492. https://doi.org/10.1007/s00604-018-3016-y

    Article  CAS  Google Scholar 

  52. Mondal TK, Gupta A, Shaw BK, Mondal S, Ghorai UK, Saha SK (2016) Highly luminescent N-doped carbon quantum dots from lemon juice with porphyrin-like structures surrounded by graphitic network for sensing applications. RSC Adv 6:59927–59934. https://doi.org/10.1039/C6RA12148A

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Guangxi Science and Technology Major Program (Guike AA 22117004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xipu He.

Ethics declarations

Compliance with ethical standards

This study is not involved in humans or animals.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 394 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, P., Song, J., Zou, X. et al. Highly sensitive fluorescent probe for mesotrione based on nitrogen and sulfur co-doped graphene quantum dots. J Nanopart Res 25, 247 (2023). https://doi.org/10.1007/s11051-023-05894-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05894-0

Keywords

Navigation