Skip to main content

Advertisement

Log in

Facile synthesis of highly fluorescent nitrogen-doped carbon quantum dots and their role in bioimaging of some pathogenic microorganisms

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Carbon quantum dots (CQDs) with outstanding fluorescence properties have shown enormous applications in bioimaging due to their biocompatibility and nano size attribute. However, the toxicity of QDs may hinder their implementation in biomedical use. Here, nitrogen-doped carbon quantum dots (N-CQDs) were produced by employing a microwave-assisted approach and then their in vivo and in vitro toxicity has been investigated. An in vitro toxicity study was conducted against human breast adenocarcinoma cell lines (MDA-MB-361) by considering the concentration of 0–600μg mL−1 of the N-CQDs and the in vivo toxicity examination was done in Swiss albino mice for 30 days by considering two concentrations of N-CQDs, i.e., 10mg/kg BW (body weight) and 20mg/kg BW. Several parameters have been inspected by these studies like cell viability, antioxidant enzymes studies, and hematological and histopathological studies, and concluded that the synthesized NCQDs are non-toxic and can be used safely for bioimaging. Furthermore, the luminescence properties of N-CQDs were inquired by labeling them on a variety of fungal and bacterial cells. When the N-CQD-labeled cells were excited at two wavelengths, it leads to the emission of green and red fluorescence enabling them ideal for bioimaging. Briefly, there is a production of inexpensive and biocompatible N-CQDs of an average particle size of ~3.16 nm that can serve as universal fluorescent agents for the detection of diverse groups of pathogenic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data supporting the study’s conclusions are accessible upon request from the corresponding author.

References

  1. Sokolov K, Follen M, Aaron J et al (1999) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999–2004

  2. Zhang L, Xing Y, He N et al (2012) Preparation of graphene quantum dots for bioimaging application. J Nanosci Nanotechnol 12:2924–2928. https://doi.org/10.1166/jnn.2012.5698

    Article  CAS  Google Scholar 

  3. Santra S, Yang H, Dutta D et al (2004) TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun 24:2810–2811. https://doi.org/10.1039/b411916a

  4. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44:4743–4768

    Article  CAS  Google Scholar 

  5. Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43:190–200. https://doi.org/10.1021/ar9001069

    Article  CAS  Google Scholar 

  6. Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  CAS  Google Scholar 

  7. Medintz IL, Tetsuo Uyeda H, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  CAS  Google Scholar 

  8. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240

    Article  CAS  Google Scholar 

  9. Arshad A, Akram R, Iqbal S et al (2019) Aqueous synthesis of tunable fluorescent, semiconductor CuInS2 quantum dots for bioimaging. Arab J Chem 12:4840–4847. https://doi.org/10.1016/j.arabjc.2016.10.002

    Article  CAS  Google Scholar 

  10. Maestro LM, Ramírez-Hernández JE, Bogdan N et al (2012) Deep tissue bio-imaging using two-photon excited CdTe fluorescent quantum dots working within the biological window. Nanoscale 4:298–302. https://doi.org/10.1039/c1nr11285f

    Article  CAS  Google Scholar 

  11. Qian Z, Ma J, Shan X et al (2014) Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chemistry 20:2254–2263. https://doi.org/10.1002/chem.201304374

    Article  CAS  Google Scholar 

  12. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18. https://doi.org/10.1021/nl0347334

    Article  CAS  Google Scholar 

  13. Liu J, Hu R, Liu J et al (2015) Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models. Mater Sci Eng C 57:222–231. https://doi.org/10.1016/j.msec.2015.07.044

    Article  CAS  Google Scholar 

  14. Hu L, Wan J, Zeng G et al (2017) Comprehensive evaluation of the cytotoxicity of CdSe/ZnS quantum dots in: phanerochaete chrysosporium by cellular uptake and oxidative stress. Environ Sci Nano 4:2018–2029. https://doi.org/10.1039/c7en00517b

    Article  CAS  Google Scholar 

  15. Nikazar S, Sivasankarapillai VS, Rahdar A et al (2020) Revisiting the cytotoxicity of quantum dots: an in-depth overview. Biophys Rev 12:703–718. https://doi.org/10.1007/s12551-020-00653-0/Published

    Article  Google Scholar 

  16. Xu X, Ray R, Gu Y et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737. https://doi.org/10.1021/ja040082h

    Article  CAS  Google Scholar 

  17. Luo PG, Sahu S, Yang ST et al (2013) Carbon “quantum” dots for optical bioimaging. J Mater Chem B 1:2116–2127. https://doi.org/10.1039/c3tb00018d

    Article  CAS  Google Scholar 

  18. Caglayan MO, Mindivan F, Şahin S (2022) Sensor and bioimaging studies based on carbon quantum dots: the green chemistry approach. Crit Rev Anal Chem 52:814–847

    Article  CAS  Google Scholar 

  19. Das R, Bandyopadhyay R, Pramanik P (2018) Carbon quantum dots from natural resource: a review. Mater Today Chem 8:96–109

    Article  CAS  Google Scholar 

  20. Zhang J, Yu SH (2016) Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today 19:382–393

    Article  CAS  Google Scholar 

  21. Wang L, Li W, Yin L et al (2020) Full-color fluorescent carbon quantum dots. Sci Adv 6(40):eabb6772. https://doi.org/10.1126/sciadv.abb6772

  22. Wang Y, Anilkumar P, Cao L et al (2011) Carbon dots of different composition and surface functionalization: cytotoxicity issues relevant to fluorescence cell imaging. Exp Biol Med 236:1231–1238. https://doi.org/10.1258/ebm.2011.011132

    Article  CAS  Google Scholar 

  23. Dong Y, Pang H, Bin YH et al (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 52:7800–7804. https://doi.org/10.1002/anie.201301114

    Article  CAS  Google Scholar 

  24. Atchudan R, Edison TNJI, Perumal S et al (2019) Green synthesized multiple fluorescent nitrogen-doped carbon quantum dots as an efficient label-free optical nanoprobe for in vivo live-cell imaging. J Photochem Photobiol A Chem 372:99–107. https://doi.org/10.1016/j.jphotochem.2018.12.011

    Article  CAS  Google Scholar 

  25. Shen TY, Jia PY, Chen DS, Wang LN (2021) Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging. Spectrochim Acta A Mol Biomol Spectrosc 248:119282. https://doi.org/10.1016/j.saa.2020.119282

  26. Tadesse A, Hagos M, Ramadevi D et al (2020) Fluorescent-nitrogen-doped carbon quantum dots derived from citrus lemon juice: green synthesis, mercury(II) ion sensing, and live cell imaging. ACS Omega 5:3889–3898. https://doi.org/10.1021/acsomega.9b03175

    Article  CAS  Google Scholar 

  27. Tan A, Yang G, Wan X (2021) Ultra-high quantum yield nitrogen-doped carbon quantum dots and their versatile application in fluorescence sensing, bioimaging and anti-counterfeiting. Spectrochim Acta A Mol Biomol Spectrosc 253:119583. https://doi.org/10.1016/j.saa.2021.119583

  28. Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20:1–11. https://doi.org/10.7508/ibj.2016.01.001

    Article  Google Scholar 

  29. Fard JK, Jafari S, Eghbal MA (2015) A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 5:447–454

    Article  CAS  Google Scholar 

  30. Herzog E, Casey A, Lyng FM et al (2007) A new approach to the toxicity testing of carbon-based nanomaterials-the clonogenic assay. Toxicol Lett 174:49–60. https://doi.org/10.1016/j.toxlet.2007.08.009

    Article  CAS  Google Scholar 

  31. Cui D, Tian F, Ozkan CS et al (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85. https://doi.org/10.1016/j.toxlet.2004.08.015

    Article  CAS  Google Scholar 

  32. Pulskamp K, Diabaté S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74. https://doi.org/10.1016/j.toxlet.2006.11.001

    Article  CAS  Google Scholar 

  33. Wan B, Wang ZX, Lv QY et al (2013) Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicol Lett 221:118–127. https://doi.org/10.1016/j.toxlet.2013.06.208

    Article  CAS  Google Scholar 

  34. Palomäki J, Karisola P, Pylkkänen L et al (2010) Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology 267:125–131. https://doi.org/10.1016/j.tox.2009.10.034

    Article  CAS  Google Scholar 

  35. Mu Q, Yang L, Davis JC et al (2010) Biocompatibility of polymer grafted core/shell iron/carbon nanoparticles. Biomaterials 31:5083–5090. https://doi.org/10.1016/j.biomaterials.2010.03.020

    Article  CAS  Google Scholar 

  36. Yuan X, Zhang X, Sun L et al (2019) Cellular toxicity and immunological effects of carbon-based nanomaterials. Part Fibre Toxicol 16(1):1–27. https://doi.org/10.1186/s12989-019-0299-z

  37. Nurunnabi M, Khatun Z, Huh KM et al (2013) In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7:6858–6867. https://doi.org/10.1021/nn402043c

    Article  CAS  Google Scholar 

  38. Chong Y, Ma Y, Shen H et al (2014) The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 35:5041–5048. https://doi.org/10.1016/j.biomaterials.2014.03.021

    Article  CAS  Google Scholar 

  39. Kim J, Song SH, Jin Y, Park HJ, Yoon H, Jeon S, Cho SW (2016) Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells. Nanoscale 8(16):8512–8519. https://doi.org/10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  40. Yang ST, Wang X, Wang H et al (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 113:18110–18114. https://doi.org/10.1021/jp9085969

    Article  CAS  Google Scholar 

  41. Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551. https://doi.org/10.1021/jp905912n

    Article  CAS  Google Scholar 

  42. Niu WJ, Li Y, Zhu RH et al (2015) Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging. Sensors Actuators B Chem 218:229–236. https://doi.org/10.1016/j.snb.2015.05.006

    Article  CAS  Google Scholar 

  43. Arul V, Edison TNJI, Lee YR, Sethuraman MG (2017) Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus. J Photochem Photobiol B Biol 168:142–148. https://doi.org/10.1016/j.jphotobiol.2017.02.007

    Article  CAS  Google Scholar 

  44. Chousidis I, Stalikas CD, Leonardos ID (2020) Induced toxicity in early-life stage zebrafish (Danio rerio) and its behavioral analysis after exposure to non-doped, nitrogen-doped and nitrogen, sulfur-co doped carbon quantum dots. Environ Toxicol Pharmacol 79:103426. https://doi.org/10.1016/j.etap.2020.103426

    Article  CAS  Google Scholar 

  45. Singh V, Kashyap S, Yadav U et al (2019) Nitrogen doped carbon quantum dots demonstrate no toxicity under: in vitro conditions in a cervical cell line and in vivo in Swiss albino mice. Toxicol Res (Camb) 8:395–406. https://doi.org/10.1039/c8tx00260f

    Article  CAS  Google Scholar 

  46. Prakash A, Yadav S, Yadav U et al (2023) Recent advances on nitrogen-doped carbon quantum dots and their applications in bioimaging: a review. Bull Mater Sci 46. https://doi.org/10.1007/s12034-022-02846-7

  47. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Introduction to pathogens. In: Molecular Biology of the Cell, 4th edn. Garland Science, pp 1–10

    Google Scholar 

  48. Anaissie EJ, Bodey GP, Rinaldi MG (1989) Emerging fungal pathogens. Eur J Clin Microbiol Infect Dis 8:323–330. https://doi.org/10.1007/BF01963467

  49. Vouga M, Greub G (2016) Emerging bacterial pathogens: the past and beyond. Clin Microbiol Infect 22:12–21. https://doi.org/10.1016/j.cmi.2015.10.010

    Article  Google Scholar 

  50. Pappas PG, Lionakis MS, Arendrup MC et al (2018) Invasive candidiasis. Nat Rev Dis Primers 4:1–20. https://doi.org/10.1038/nrdp.2018.26

    Article  Google Scholar 

  51. Kwon-chung KJ, Fraser JA, Doering TL et al (2014) Cryptococcus neoformans and Cryptococcus gattii, the Etiologic Agents of Cryptococcosis. Cold Spring Harb Perspect Med 4:a019760

    Article  Google Scholar 

  52. Dellière S, Joannard B, Benderdouche M et al (2022) Emergence of diffi cult-to-treat Tinea corporis caused by Trichophyton mentagrophytes complex isolates, Paris, France. Emerg Infect Dis 28:1–5

    Article  Google Scholar 

  53. Sugui JA, Kwon-Chung KJ, Juvvadi PR et al (2015) Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med 5:1–18. https://doi.org/10.1101/cshperspect.a019786

    Article  CAS  Google Scholar 

  54. Hunter PR (2003) Drinking water and diarrhoeal disease due to Escherichia coli. J Water Health 1:65–72. https://doi.org/10.2166/wh.2003.0008

    Article  Google Scholar 

  55. Ondusko DS, Nolt D (2018) Staphylococcus aureus. Pediatr Rev 39:287–298. https://doi.org/10.1542/pir.2017-0224

    Article  Google Scholar 

  56. Bodey GP, Bolivar R, Fainstein V, Jadeja L (1983) Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 5(2):279–313

    Article  CAS  Google Scholar 

  57. De Medeiros TV, Manioudakis J, Noun F et al (2019) Microwave-assisted synthesis of carbon dots and their applications. J Mater Chem C 7:7175–7195. https://doi.org/10.1039/c9tc01640f

    Article  CAS  Google Scholar 

  58. Tan J, Zou R, Zhang J et al (2016) Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix. Nanoscale 8:4742–4747. https://doi.org/10.1039/c5nr08516k

    Article  CAS  Google Scholar 

  59. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. https://doi.org/10.1039/c6ra17788c

    Article  CAS  Google Scholar 

  60. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  61. Das K, Samanta L, Chainy GBN (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian J Biochem Biophys 37:201–204

    CAS  Google Scholar 

  62. Claiborne AL (2018) CRC Handbook of Methods for Oxygen Radical Research. CRC Press Taylor & Francis Group

    Google Scholar 

  63. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  64. Ou SF, Zheng YY, Lee SJ et al (2021) N-doped carbon quantum dots as fluorescent bioimaging agents. Crystals 11:1–12. https://doi.org/10.3390/cryst11070789

    Article  CAS  Google Scholar 

  65. Sharma N, Sharma I, Bera MK (2022) Microwave-assisted green synthesis of carbon quantum dots derived from calotropis gigantea as a fluorescent probe for bioimaging. J Fluoresc 32:1039–1049. https://doi.org/10.1007/s10895-022-02923-4

    Article  CAS  Google Scholar 

  66. Zhao L, Wang Y, Zhao X et al (2019) Facile synthesis of nitrogen-doped carbon quantum dots with chitosan for fluorescent detection of Fe3+. Polymers (Basel) 11:1–12. https://doi.org/10.3390/polym11111731

    Article  CAS  Google Scholar 

  67. Nandiyanto ABD, Oktiani R, Ragadhita R (2019) How to read and interpret ftir spectroscope of organic material. Indones. J Sci Technol 4:97–118. https://doi.org/10.17509/ijost.v4i1.15806

    Article  Google Scholar 

  68. Tadesse A, Ramadevi D, Hagos M et al (2018) Synthesis of nitrogen doped carbon quantum dots/magnetite nanocomposites for efficient removal of methyl blue dye pollutant from contaminated water. RSC Adv 8:8528–8536. https://doi.org/10.1039/c8ra00158h

    Article  CAS  Google Scholar 

  69. De B, Voit B, Karak N (2013) Transparent luminescent hyperbranched epoxy/carbon oxide dot nanocomposites with outstanding toughness and ductility. ACS Appl Mater Interfaces 5:10027–10034. https://doi.org/10.1021/am402415g

    Article  CAS  Google Scholar 

  70. Rahal A, Kumar A, Singh V et al (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014. https://doi.org/10.1155/2014/761264

  71. Jebakumar Immanuel Edison TN, Atchudan R, Karthik N et al (2020) Facile hydrothermal synthesis of nitrogen rich blue fluorescent carbon dots for cell bio-imaging of Candida albicans. Process Biochem 88:113–119. https://doi.org/10.1016/j.procbio.2019.10.003

    Article  CAS  Google Scholar 

  72. Liu BR, Huang YW, Chiang HJ, Lee HJ (2010) Cell-penetrating peptide-functionalized quantum dots for intracellular delivery. J Nanosci Nanotechnol 10:7897–7905. https://doi.org/10.1166/jnn.2010.3012

    Article  CAS  Google Scholar 

  73. Barroso MM (2011) Quantum dots in cell biology. J Histochem Cytochem 59:237–251. https://doi.org/10.1369/0022155411398487

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Council of Scientific and Industrial Research (CSIR), India, for JRF grant (JRF Grant no: 09/013(0897)/2019-EMR-I) for Aakriti Prakash and Institute of Eminence (IoE), BHU, Varanasi, India (Grant no. R/Dev/D/IoE/Incentive/2021–22/32277), for Preeti Suman Saxena. We also acknowledge DST and SATHI-BHU for providing Confocal Laser Scanning Super Resolution Microscope facility for our research work.

Funding

This research work was funded by two funding agencies who financially supported this work.

Author information

Authors and Affiliations

Authors

Contributions

Aakriti Prakash: devised the main concept of the work, carried out the experiment, and prepared the manuscript.

Sujit Yadav: helped to analyze and manage data.

Punit Tiwari: helped in providing the strain of fungi and bacteria.

Anchal Srivastava: guidance.

Ragini Tilak: guidance and her lab was used for procurement of microorganisms.

Preeti Suman Saxena: guidance.

Corresponding author

Correspondence to Preeti S. Saxena.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 412 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, A., Yadav, S., Tiwari, P. et al. Facile synthesis of highly fluorescent nitrogen-doped carbon quantum dots and their role in bioimaging of some pathogenic microorganisms. J Nanopart Res 25, 237 (2023). https://doi.org/10.1007/s11051-023-05893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05893-1

Keywords

Navigation