Skip to main content
Log in

PtSn propane dehydrogenation catalyst supported by γ-Al2O3: insight into the supports and active species interaction

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Three γ-Al2O3 supports were prepared by hydrothermal method, and PtSn/Al2O3 catalysts were prepared by sequential impregnation for propane dehydrogenation. The catalyst was characterized by TEM, PXRD, H2-TPR, and other characterization methods. The effects of different morphologies of PtSn/Al2O3 catalysts on the dehydrogenation performance and coking of propane were investigated. The results show that the exposed crystal planes of three morphologies of Al2O3 support are different, which makes the Lewis acid content on the support surface and the interaction of active metals on the support different, thus affecting the catalytic performance of the catalyst and coking carbon.

Graphical Abstract

Different morphologies of γ-Al2O3 expose different crystal planes, change the Lewis acid content on the surface of the support, and regulate the interaction between active metals and support, thus affecting propane dehydrogenation performance and catalyst coking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Natarajan P, Khan HA, Jaleel A et al (2020) The pronounced effect of Sn on RhSn catalysts for propane dehydrogenation. J Catal 392:8–20

    Article  CAS  Google Scholar 

  2. Tanabe K, Misono M, Ono Y et al (1989) Acid and base centers: structure and acid-base property. Stud Surf Sci Catal 27–213

  3. Argyle MD, Bartholomew CH (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5(1):145–269

    Article  CAS  Google Scholar 

  4. Dixit P (2018) Structure-activity relationships in alkane dehydrogenation on gamma-Al2O3: site-dependent reactions [J]. ACS Catal 8(12):11570–11578

    Article  CAS  Google Scholar 

  5. Sricharoen C, Jongsomjit B, Panpranot J et al (2020) The key to catalytic stability on sol-gel derived SnOx/SiO2 catalyst and the comparative study of side reaction with K-PtSn/Al2O3 toward propane dehydrogenation-ScienceDirect. Catal Today 375:343–351

    Article  Google Scholar 

  6. Gangwar J, Gupta BK, Tripathi SK et al (2015) Phase-dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis. Nanoscale 7(32):13313–13344

    Article  CAS  Google Scholar 

  7. Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81(8):1995–2012

    Article  CAS  Google Scholar 

  8. Bell TE, González-Carballo JM, Tooze RP et al (2018) High Yield Manufacturing of γ-Al2O3 Nanorods. ACS Sustain Chem Eng 6:88–92

    Article  CAS  Google Scholar 

  9. Digne M, Sautet P, Raybaud P et al (2004) Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces. J Catal 226(1):54–68

    Article  CAS  Google Scholar 

  10. Shi Y, Li X, Rong X et al (2017) Influence of support on the catalytic properties of Pt-Sn-K/θ-Al2O3 for propane dehydrogenation. RSC Adv 7(32):19841–19848

    Article  CAS  Google Scholar 

  11. Xu J, Wang Q, Deng F (2019) Metal active sites and their catalytic functions in zeolites: insights from solid-state NMR spectroscopy. Accounts Chem Res 52(8):2179–2189

    Article  CAS  Google Scholar 

  12. Yang WY, Ling FX, Wang G et al (2019) Macroporous alumina with three-dimensionally interconnected pore structure: synthesis, characterization and transformation mechanism. J Fuel Chem Technol 47(6):745–750

    CAS  Google Scholar 

  13. Dewangan N, Ashok J, Sethia M et al (2019) Cobalt-based catalyst supported on different morphologies of alumina for non-oxidative propane dehydrogenation: effect of metal support interaction and Lewis acidic sites. ChemCatChem 11(19):4923–4934

    Article  CAS  Google Scholar 

  14. Shi L, Deng GM, Li WC et al (2015) Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew 54(47):13994–13998

    Article  CAS  Google Scholar 

  15. Hu M, Kopa D, Likozar B (2020) Kinetics of non-oxidative propane dehydrogenation on Cr2O3 and the nature of catalyst deactivation from first-principles simulations. J Catal 386:126–138

    Article  Google Scholar 

  16. Hu M, Kopa D, Bajec D, Likozar B (2021) Effect of surface oxidation on oxidative propane dehydrogenation over chromia: an ab initio multiscale kinetic study. ACS Catal 11(17):11233–11247

    Article  Google Scholar 

  17. Motagamwal AH, Almallahi R, Wortman J et al (2021) Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 373:217–222

    Article  Google Scholar 

  18. Papoian G, Nørskov JK, Hoffmann R (2000) A comparative theoretical study of the hydrogen, methyl, and ethyl chemisorption on the Pt (111) surface. JACS 122(17):4129–4144

    Article  CAS  Google Scholar 

  19. Nawaz Z, Tang X, Yao W et al (2010) Parametric characterization and influence of tin on the performance of Pt-Sn/SAPO-34 catalyst for selective propane dehydrogenation to propylene. Ind Eng Chem Res 49(3):1274–1280

    Article  CAS  Google Scholar 

  20. Watson GW, Wells R, Willock DJ et al (2016) Density functional theory calculations on the interaction of ethene with the 111 surface of platinum. J Phys Chem B 104(27):6439–6446

    Article  Google Scholar 

  21. Feng J, Liang Z, Li S et al (2015) Propane dehydrogenation over Pt/TiO2-Al2O3 catalysts. ACS Catal 5(1):438–447

    Article  Google Scholar 

  22. Wang HZ, Sun LL, Sui ZJ et al (2018) Coke formation on Pt-Sn/Al2O3 catalyst for propane dehydrogenation. Ind Eng Chem Res 57(26):8647–8654

    Article  CAS  Google Scholar 

  23. Chen XY, Huh HS, Lee SW (2007) Hydrothermal synthesis of boehmite (γ-AlOOH) nanoplatelets and nanowires: pH-controlled morphologies. Nanotechnology 18(28):285608

    Article  Google Scholar 

  24. Prakash N, Lee MH, Yoon S et al (2017) Role of acid solvent to prepare highly active PtSn/θ-Al2O3 catalysts in the dehydrogenation of propane to propylene. Catal Today 293:33–41

    Article  Google Scholar 

  25. Clauser AL, Sarfo KO, Giulian R et al (2023) Characterization of the atomic-level structure of γ-alumina and (111) Pt/γ-alumina interfaces. Acta Mater 245:118609

    Article  CAS  Google Scholar 

  26. Dehkordi SAH, Golbodaqi M, Mortazavi-Manesh A et al (2023) Dimethyl ether from methanol on mesoporous γ-alumina catalyst prepared from surfactant free highly porous pseudo-boehmite. Mol Catal 538:113004

    Article  Google Scholar 

  27. Mardwita M, Yusmartini ES, Wisudawati N (2020) Effects of cobalt and chromium loadings to the catalytic activities of supported metal catalysts in methane oxidation. Bull Chem React Eng 15(1):213–220

    Article  CAS  Google Scholar 

  28. Clauser AL, Giulian R, Mcclure ZD et al (2020) Orientation and morphology of Pt nanoparticles in gamma-alumina processed via ion implantation and thermal annealing. Scripta Mater 188:44–49

    Article  CAS  Google Scholar 

  29. Zhu X, Wang T, Xu Z et al (2022) Pt-Sn clusters anchored at Al3+ penta sites as a sinter-resistant and regenerable catalyst for propane dehydrogenation. J Energy Chem 65:293–301

    Article  CAS  Google Scholar 

  30. Sharma L, Jiang X, Wu Z et al (2021) Elucidating the origin of selective dehydrogenation of propane on γ-alumina under H2S treatment and co-feed. J Catal 394:142–156

    Article  CAS  Google Scholar 

  31. Lieske H, Lietz G, Spindler H et al (1983) Reactions of platinum in oxygen-and hydrogen-treated Ptγ-Al2O3 catalysts: I Temperature-programmed reduction, adsorption, and redispersion of platinum. J Catal 81(1):8–16

    Article  CAS  Google Scholar 

  32. Cui ET, Lu GX (2013) Modulating photogenerated electron transfer and hydrogen production rate by controlling surface potential energy on a selectively exposed Pt Facet on Pt/TiO2 for enhancing hydrogen production. J Phys Chem C 117(50):26415–26425

    Article  CAS  Google Scholar 

  33. Al-Ansari A, Yadav K, Anderson D et al (2005) Diverse application of unique high-performance water-based-mud technology in the Middle East. SPE/IADC middle east drilling technology conference and exhibition. OnePetro

  34. Li Q, Sui Z, Zhou X et al (2011) Coke formation on Pt-Sn/Al2O3 catalyst in propane dehydrogenation: coke characterization and kinetic study. Top Catal 54:888–896

    Article  CAS  Google Scholar 

  35. Iglesias-Juez A, Beale AM, Maaijen K et al (2010) A combined in situ time-resolved UV-Vis, Raman and high-energy resolution x-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions. J Catal 276(2):268–279

    Article  CAS  Google Scholar 

  36. Wang X, Cui J, Zhang N et al (2022) Propane dehydrogenation over PtSn/Al2O3 catalysts: influence of urea to Al (NO3)3·9H2O Ratio. Catalysts 12(2):157–169

    Article  CAS  Google Scholar 

  37. Khanmohammadi S, Taheri-Nassaj E, Farrokhi-Rad M (2020) Synthesis of meso-porous gamma-alumina membrane: effect of yttria addition on the thermal stability. Surf Interfaces 21:100683

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 91961110, U1908203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfeng Bi or Lijuan Song.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 456 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Jiao, J., He, K. et al. PtSn propane dehydrogenation catalyst supported by γ-Al2O3: insight into the supports and active species interaction. J Nanopart Res 25, 238 (2023). https://doi.org/10.1007/s11051-023-05892-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05892-2

Keywords

Navigation