Skip to main content
Log in

Research Progress of Transition Metal Anode Catalysts for Direct Borohydride Fuel Cells

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Direct borohydride fuel cell (DBFC) has been widely used in portable and mobile power supply because of its advantages of high theoretical cell voltage, considerable specific capacity and green environmental friendliness. Anode catalyst is the key material to improve DBFC performance and fuel efficiency. In the past, noble metals have been used as anode catalysts for DBFC batteries, but the high cost and limited resources of noble metals have limited the further development of the DBFC. At present, transition metal catalysts have received increasing attention due to their low cost and catalytic activity comparable to that of noble metals. On the basis of elucidating the working principle of DBFC, the research achievements of transition metal catalysts for DBFC in the past 20 years are reviewed in this paper. Through a large number of literature studies, it is found that the research results related to Ni-based, Co-based and their composite transition metal catalysts are the most abundant. It is also found that transition metal catalysts with nanometer size and loose structure show good catalytic activity. Therefore, Ni-based, Co-based and their composite transition metal catalysts were reviewed in detail. We believe that with the deepening of research, the proportion of transition metals in DBFC anode catalysts is increasing, which has a broader research space and application prospect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu BB, Cen Y, Xu CL, Xiang Q, Aslam KM, Liu LJ, Li S, Liu YP, Yu DM, Chen CG (2020) Hierarchical NiMoO4@Co3V2O8 hybrid nanorod/nanosphere clusters as advanced electrodes for high-performance electrochemical energy storage. Nanoscale 12:3763–3776. https://doi.org/10.1039/C9NR09319B

    Article  CAS  Google Scholar 

  2. Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: an overview. Int J Hydrogen Energy 45:3847–3845. https://doi.org/10.1016/j.ijhydene.2019.12.059

    Article  CAS  Google Scholar 

  3. Zhang F, Zhao PC, Niu M, Maddy J (2016) The survey of key technologies in hydrogen energy storage. Int J Hydrogen Energy 41:14535–14552. https://doi.org/10.1016/j.ijhydene.2016.05.293

    Article  CAS  Google Scholar 

  4. Ma J, Choudhury NA, Sahai Y (2010) A comprehensive review of direct borohydride fuel cells. Renew Sustain Energy Rev 14:183–199. https://doi.org/10.1016/j.rser.2009.08.002

    Article  CAS  Google Scholar 

  5. Santos DMF, Sequeira CAC (2011) Sodium borohydride as a fuel for the future. Renew Sustain Energy Rev 15:3980–4001. https://doi.org/10.1016/j.rser.2011.07.018

    Article  CAS  Google Scholar 

  6. Rostamikia G, Janik MJ (2010) Direct borohydride oxidation: mechanism determination and design of alloy catalysts guided by density functional theory. Energy Environ Sci 3:1262–1274. https://doi.org/10.1039/C0EE00115E

    Article  CAS  Google Scholar 

  7. Liu BH, Li ZP (2009) Current status and progress of direct borohydride fuel cell technology development. J Power Sources 187:291–297. https://doi.org/10.1016/j.jpowsour.2008.11.017

    Article  CAS  Google Scholar 

  8. Merino-Jiménez I, Poncedeleon C, Shah AA, Walsh FC (2012) Developments in direct borohydride fuel cells and remaining challenges. J Power Sources 219:339–357. https://doi.org/10.1016/j.jpowsour.2012.06.091

    Article  CAS  Google Scholar 

  9. Rostamikia G, Mendoza AJ, Hickner MA, Janik MJ (2011) First-principles based microkinetic modeling of borohydride oxidation on a Au (111) electrode. J Power Sources 196:9228–9237. https://doi.org/10.1016/j.jpowsour.2011.07.042

    Article  CAS  Google Scholar 

  10. Cao DX, Gao YY, Wang GL, Miao RR, Liu Y (2010) A direct NaBH4-H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes. Int J Hydrogen Energy 35:807–813. https://doi.org/10.1016/j.ijhydene

    Article  CAS  Google Scholar 

  11. Finkelstein DA, Letcher CD, Jones DJ, Sandberg LM, Watts DJ, Abruña HD (2013) Self-poisoning during BH4- oxidation at Pt and Au, and in situ poison removal procedures for BH4- fuel cells. J Phys Chem C 117:1571–1581. https://doi.org/10.1021/jp308677f

    Article  CAS  Google Scholar 

  12. Liu J, Wang H, Wu C, Zhao QL, Wang XY, Yi LH (2014) Preparation and characterization of nanoporous carbon-supported platinum as anode electrocatalyst for direct borohydride fuel cell. Int J Hydrogen Energy 39:6729–6736. https://doi.org/10.1016/j.ijhydene.2014.01.200

    Article  CAS  Google Scholar 

  13. Kim JH, Kim HS, Kang YM, Song MS, Rajendran S, Han SC, Jung DH, Lee JY (2004) Carbon-supported and unsupported Pt anodes for direct borohydride liquid fuel cells. J Electrochem Soc 151:A1039. https://doi.org/10.1149/1.1756351

    Article  CAS  Google Scholar 

  14. Liu X, Yi LH, Wang XY, Su JC, Song YF, Liu J (2012) Graphene supported platinum nanoparticles as anode electrocatalyst for direct borohydride fuel cell. Int J Hydrogen Energy 37:17984–17991. https://doi.org/10.1016/j.ijhydene.2012.09.136

    Article  CAS  Google Scholar 

  15. Celik C, San FGB, Sarac HI (2010) Improving the direct borohydride fuel cell performance with thiourea as the additive in the sodium borohydride solution. Int J Hydrogen Energy 35:8678–8682. https://doi.org/10.1016/j.ijhydene.2010.04.150

    Article  CAS  Google Scholar 

  16. Cheng K, Jiang JT, Kong SY, Gao YY, Ye K, Wang GL, Zhang WP, Cao DX (2017) Pd nanoparticles support on rGO-C@TiC coaxial nanowires as a novel 3D electrode for NaBH4 electrooxidation. Int J Hydrogen Energy 42:2943–2951. https://doi.org/10.1016/j.ijhydene.2016.11.156

    Article  CAS  Google Scholar 

  17. Braesch G, Bonnefont A, Martin V, Savinova ER, Chatenet M (2018) Borohydride oxidation reaction mechanisms and poisoning effects on Au, Pt and Pd bulk electrodes: from model (low) to direct borohydride fuel cell operating (high) concentrations. Electrochim Acta 273:483–494. https://doi.org/10.1016/j.electacta.2018.04.068

    Article  CAS  Google Scholar 

  18. Cheng H, Scott K, Lovell K (2006) Material aspects of the design and operation of direct borohydride fuel cells. Fuel Cells 6:367–375. https://doi.org/10.1002/fuce.200500260

    Article  CAS  Google Scholar 

  19. Cheng H, Scott K (2006) Investigation of Ti mesh-supported anodes for direct borohydride fuel cells. J Appl Electrochem 36:1361–1366. https://doi.org/10.1007/s10800-006-9199-7

    Article  CAS  Google Scholar 

  20. Aziznia A, Oloman CW, Gyenge EL (2013) Platinum-and membrane-free swiss-roll mixed-reactant alkaline fuel cell. ChemSusChem 6:847–855. https://doi.org/10.1002/cssc.201300127

    Article  CAS  Google Scholar 

  21. Feng RX, Dong H, Cao YL, Ai XP, Yang HX (2007) Agni-catalyzed anode for direct borohydride fuel cells. Int J Hydrogen Energy 32:4544–4549. https://doi.org/10.1016/j.ijhydene.2007.08.001

    Article  CAS  Google Scholar 

  22. Pei F, Wang Y, Wang XY, He PY, Chen QQ, Wang XY, Wang H, Yi LH, Guo J (2010) Performance of supported Au-Co alloy as the anode catalyst of direct borohydride-hydrogen peroxide fuel cell. Int J Hydrogen Energy 35:8136–8142. https://doi.org/10.1016/j.ijhydene.2010.01.016

    Article  CAS  Google Scholar 

  23. Wang GJ, Gao YZ, Wang ZB, Du CY, Wang JJ, Yin GP (2010) Investigation of PtNi/C anode electrocatalysts for direct borohydride fuel cell. J Power Sources 195:185–189. https://doi.org/10.1016/j.jpowsour.2009.06.080

    Article  CAS  Google Scholar 

  24. Amendola SC, Onnerud P, Kelly MT, Petillo PJ, Sharp-Goldman SL, Binder M (1999) A novel high power density borohydride-air cell. J Power Sources 84:130–133. https://doi.org/10.1016/S0378-7753(99)00259-1

    Article  CAS  Google Scholar 

  25. Dekel DR (2018) Review of cell performance in anion exchange membrane fuel cells. J Power Sources 375:158–169. https://doi.org/10.1016/j.jpowsour.2017.07.117

    Article  CAS  Google Scholar 

  26. Olu PY, Job N, Chatenet M (2016) Evaluation of anode (electro) catalytic materials for the direct borohydride fuel cell: methods and benchmarks. J Power Sources 327:235–257. https://doi.org/10.1016/j.jpowsour.2016.07.041

    Article  CAS  Google Scholar 

  27. Wang MJ, Chen SG, Shao MH, Wei ZD (2021) Recent advance of electrocatalysts in hydrogen fuel cells. Chem Ind Eng Prog 40:4948–4961. https://doi.org/10.16085/j.issn.1000-6613.2021-1087

    Article  CAS  Google Scholar 

  28. Behmenyar G, Akin AN (2014) Investigation of carbon supported Pd-Cu nanoparticles as anode catalysts for direct borohydride fuel cell. J Power Sources 249:239–246. https://doi.org/10.1016/j.jpowsour.2013.10.063

    Article  CAS  Google Scholar 

  29. Jamard R, Latour A, Salomon J, Capron P, Martinent-Beaumont A (2008) Study of fuel efficiency in a direct borohydride fuel cell. J Power Sources 176:287–292. https://doi.org/10.1016/j.jpowsour.2007.10.036

    Article  CAS  Google Scholar 

  30. Geng XY, Zhang HM, Ye W, Ma YW, Zhong HX (2008) Ni-Pt/C as anode electrocatalyst for a direct borohydride fuel cell. J Power Sources 185:627–632. https://doi.org/10.1016/j.jpowsour.2008.09.010

    Article  CAS  Google Scholar 

  31. Ma JF, Liu YN, Zhang P, Wang J (2008) A simple direct borohydride fuel cell with a cobalt phthalocyanine catalyzed cathode. Electrochem Commun 10:100–102. https://doi.org/10.1016/j.elecom.2007.11.006

    Article  CAS  Google Scholar 

  32. Wang YG, Xia YY (2006) A direct borohydride fuel cell using MnO2- catalyzed cathode and hydrogen storage alloy anode. Electrochem Commun 8:1775–1778. https://doi.org/10.1016/j.elecom.2006.08.018

    Article  CAS  Google Scholar 

  33. Kim C, Kim KJ, Ha MY (2008) Performance enhancement of a direct borohydride fuel cell in practical running conditions. J Power Sources 180:154–161. https://doi.org/10.1016/j.jpowsour.2008.01.042

    Article  CAS  Google Scholar 

  34. Zhang XJ, Wu Y, Fu K, Zheng J, Li XG (2018) Hydrogen storage properties of LaMg4Cu. Intermetallics 95:73–79. https://doi.org/10.1016/j.intermet.2018.01.015

    Article  CAS  Google Scholar 

  35. Choudhury NA, Raman RK, Sampath S, Shukla AK (2005) An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. J Power Sources 143:1–8. https://doi.org/10.1016/j.jpowsour.2004.08.059

    Article  CAS  Google Scholar 

  36. Liu BH, Suda S (2008) Hydrogen storage alloys as the anode materials of the direct borohydride fuel cell. J Alloys Compd 454:280–285. https://doi.org/10.1016/j.jallcom.2006.12.034

    Article  CAS  Google Scholar 

  37. Wang GL, Wang XY, Miao RR, Cao DX, Sun KN (2010) Effects of alkaline treatment of hydrogen storage alloy on electrocatalytic activity for NaBH4 oxidation. Int J Hydrogen Energy 35:1227–1231. https://doi.org/10.1016/j.ijhydene.2009.11.041

    Article  CAS  Google Scholar 

  38. Schlesinger HI, Brown HC, Finholt AB, Gilbreath JR, Hockstra HR, Hydo EK (1953) Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J Am. Chem. Soc 75:215–219. https://doi.org/10.1021/ja01097a057

    Article  CAS  Google Scholar 

  39. Mirkin MV, Yang H, Bard AJ (1992) Borohydride oxidation at a gold electrode. J Electrochem Soc 139:2212–2217. https://doi.org/10.1149/1.2221204

    Article  CAS  Google Scholar 

  40. Lee SM, Kim JH, Lee HH, Lee PS, Lee JY (2002) The characterization of an alkaline fuel cell that uses hydrogen storage alloys. J Electrochem Soc 149:A603–A606. https://doi.org/10.1149/1.1467365

    Article  CAS  Google Scholar 

  41. Lv H, Li D, Strmcnik D, Paulikas AP, Markovic NM, Stamenkovic VR (2016) Recent advances in the design of tailored nanomaterials for efficient oxygen reduction rection. Nano Energy 29:149–165. https://doi.org/10.1016/j.nanoen.2016.04.008

    Article  CAS  Google Scholar 

  42. Sljukic B, Banks CE, Compton RG (2005) An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes. J Iran Chem Soc 2:1–25. https://doi.org/10.1007/BF03245775

    Article  CAS  Google Scholar 

  43. Sljukic B, Santos DMF (2021) Direct borohydride fuel cells (DBFCs). In: Akay RG, Yurtcan AB (ed) Direct liquid fuel cells fundamentals, advances and future. Elsevier. Amsterdam. pp 203–232. https://doi.org/10.1016/B978-0-12-818624-4.00010-8

  44. Leon CP, Walsh FC, Pletcher D, Browning DJ, Lakeman JB (2006) Direct borohydride fuel cells. J Power Sources 155:172–181. https://doi.org/10.1016/j.jpowsour.2006.01.011

    Article  CAS  Google Scholar 

  45. Ouyang LZ, Huang JL, Wang H, Liu JW, Zhu M (2017) Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: a review. Mater Chem Phys 200:164–178. https://doi.org/10.1016/j.matchemphys.2017.07.002

    Article  CAS  Google Scholar 

  46. Salunkhe RR, Lin JJ, Malgras V, Dou SX, Kim JH, Yamauchi Y (2015) Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11:211–218. https://doi.org/10.1016/j.nanoen.2014.09.030

    Article  CAS  Google Scholar 

  47. Cao F, Pan GX, Xia XH, Tang PS, Chen HF (2014) Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application. J Power Sources 264:161–167. https://doi.org/10.1016/j.jpowsour.2014.04.103

    Article  CAS  Google Scholar 

  48. Zhang M, Huang Z, Shen ZG, Gong YP, Chi B, Pu J, Li J (2017) High-performance aqueous rechargeable Li-Ni battery based on Ni(OH)2/NiOOH redox couple with high voltage. Adv Energy Mater 7:1700155. https://doi.org/10.1002/aenm.201700155

    Article  CAS  Google Scholar 

  49. Yuan CZ, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides:design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504. https://doi.org/10.1002/anie.201303971

    Article  CAS  Google Scholar 

  50. Li WD, Song BH, Manthiram A (2017) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46:3006–3059. https://doi.org/10.1039/C6CS00875E

    Article  CAS  Google Scholar 

  51. Roger I, Shipman MA, Symes MD (2017) Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1:0003. https://doi.org/10.1038/s41570-016-0003

    Article  CAS  Google Scholar 

  52. Zhao QH, Yang JL, Liu MQ, Wang R, Zhang GX, Wang H, Tang HT, Liu CK, Mei ZW, Chen HB, Pan F (2018) Tuning electronic push/pull of Ni-based hydroxides to enhance hydrogen and oxygen evolution reactions for water splitting. ACS Catal 8:5621–5629. https://doi.org/10.1021/acscatal.8b01567

    Article  CAS  Google Scholar 

  53. Schalenbach M, Kasian O, Mayrhofer KJJ (2018) An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation. Int J Hydrogen Energy 43:11932–11938. https://doi.org/10.1016/j.ijhydene.2018.04.219

    Article  CAS  Google Scholar 

  54. Oshchepkov AG, Bonnefont A, Pronkin SN, Cherstiouk OV, Bouillet CU, Papaefthimiou V, Parmon VN, Savinova ER (2018) Nanostructured nickel nanoparticles supported on vulcan carbon as a highly active catalyst for the hydrogen oxidation reaction in alkaline media. J Power Sources 402:447–452. https://doi.org/10.1016/j.jpowsour.2018.09.051

    Article  CAS  Google Scholar 

  55. Wang J, Mao SJ, Liu ZY, Wei ZZ, Wang HY, Chen YQ, Wang Y (2017) Dominating role of Ni0 on the interface of Ni/NiO for enhanced hydrogen evolution reaction. ACS Appl Mater Interfaces 9:7139–7147. https://doi.org/10.1021/acsami.6b15377

    Article  CAS  Google Scholar 

  56. Indig ME, Snyder RN (1962) Sodium borohydride, an interesting anodic fuel (1). J Electrochem Soc 109:1104. https://doi.org/10.1149/1.2425247

    Article  CAS  Google Scholar 

  57. Liu HB, Li ZP, Suda S (2003) Anodic oxidation of alkali borohydrides catalyzed by nickel. J Electrochem Soc 150:A398. https://doi.org/10.1149/1.1553785

    Article  CAS  Google Scholar 

  58. Liu HB, Li ZP, Suda S (2004) Electrocatalysts for the anodic oxidation of borohydrides. Electrochim Acta 49:3097–3105. https://doi.org/10.1016/j.electacta.2004.02.023

    Article  CAS  Google Scholar 

  59. Liu HB, Li ZP, Arai K, Suda S (2005) Performance improvement of a micro borohydride fuel cell operating at ambient conditions. Electrochim Acta 50:3719–3725. https://doi.org/10.1016/j.electacta.2005.01.018

    Article  CAS  Google Scholar 

  60. Yi LH, Song FH, Wang XY, Yi LL, Hu JF, Su G, Yi W, Yan HL (2012) Carbon supported palladium hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells. J Power Sources 205:63–70. https://doi.org/10.1016/j.jpowsour.2012.01.017

    Article  CAS  Google Scholar 

  61. Duan DH, Liang JW, Liu HH, You X, Wei HK, Wei GQ, Liu SB (2015) The effective carbon supported core-shell structure of Ni@Au catalysts for electro-oxidation of borohydride. Int J Hydrogen Energy 40:488–500. https://doi.org/10.1016/j.ijhydene.2014.10.101

    Article  CAS  Google Scholar 

  62. Zhang DM, Cheng K, Shi NN, Guo F, Wang GL, Cao DX (2013) Nickel particles supported on multi-walled carbon nanotubes modified sponge for sodium borohydride electrooxidation. Electrochem Commun 35:128–130. https://doi.org/10.1016/j.elecom.2013.08.015

    Article  CAS  Google Scholar 

  63. Aytac A, Gurbuz M, Sanli AE (2011) Electrooxidation of hydrogen peroxide and sodium borohydride on Ni deposited carbon fiber electrode for alkaline fuel cells. Int J Hydrogen Energy 36:10013–10021. https://doi.org/10.1016/j.ijhydene.2011.05.079

    Article  CAS  Google Scholar 

  64. Oshchepkov AG, Braesch G, Ouldamara S, Rostamikia G, Maranzana G, Bonnefont A, Papaefthimiou V, Janik MJ, Chatenet M, Savinova ER (2019) Nickel metal nanoparticles as anode electrocatalysts for highly efficient direct borohydride fuel cells. ACS Catal 9:8520–8528. https://doi.org/10.1021/ACSCATAL.9B01616

    Article  CAS  Google Scholar 

  65. Oshchepkov AG, Bonnefont A, Saveleva VA, Papaefthimiou V, Zafeiratos S, Pronkin SN, Parmon VN, Savinova ER (2016) Exploring the influence of the nickel oxide species on the kinetics of hydrogen electrode reactions in alkaline media. Top Catal 59:1319–1331. https://doi.org/10.1007/s11244-016-0657-0

    Article  CAS  Google Scholar 

  66. Dong H, Feng RX, Ai XP, Cao YL, Yang HX, Cha CS (2005) Electrooxidation mechanisms and discharge characteristics of borohydride on different catalytic metal surfaces. J Phys Chem B 109:10896–10901. https://doi.org/10.1021/jp050322v

    Article  CAS  Google Scholar 

  67. Braesch G, Oshchepkov AG, Bonnefont A, Asonkeng F, Maurer T, Maranzana G, Savinova ER, Chatenet M (2020) Nickel 3D structures enhanced by electrodeposition of nickel nanoparticles as high performance anodes for direct borohydride fuel cells. ChemElectroChem 7:1789–1799. https://doi.org/10.1002/celc.202000254

    Article  CAS  Google Scholar 

  68. Kim SM, Jin SH, Lee YJ, Lee MH (2017) Design of nickel electrodes by electrodeposition: effect of internal stress on hydrogen evolution reaction in alkaline solutions. Electrochim Acta 252:67–75. https://doi.org/10.1016/j.electacta.2017.08.157

    Article  CAS  Google Scholar 

  69. Xu CL, Chen P, Hu BB, Xiang Q, Cen Y, Hu BH, Liu LJ, Liu YP, Yu DM, Chen CG (2020) Porous nickel electrodes with controlled texture for the hydrogen evolution reaction and sodium borohydride electrooxidation. CrystEngComm 22:4228–4237. https://doi.org/10.1039/D0CE00344A

    Article  CAS  Google Scholar 

  70. Hu BH, Xu CL, Chen P, Yu JJ, Hu BB, Xiang Q, Cen Y, Liu YP, Yu DM, Chen CG (2021) Efficient nickel catalyst with preferred orientation and microsphere for direct borohydride fuel cell. Int J Hydrogen Energy 46:27516–27528. https://doi.org/10.1016/j.ijhydene.2021.06.002

    Article  CAS  Google Scholar 

  71. Yu DM, Shen Y, Zhen Y, Wen JZ, Wang J, Chen CG (2013) The preparation and performance of high activity Ni-Cr binary catalysts for direct borohydride fuel cells. Chin Sci Bull 58:2435–2439. https://doi.org/10.1007/s11434-013-5723-4

    Article  CAS  Google Scholar 

  72. Yu JJ, Hu BH, Xu CL, Meng JZ, Yang S, Li Y, Zhou XY, Liu YP, Yu DM, Chen CG (2021) An efficient Ni-P amorphous alloy electrocatalyst with a hierarchical structure toward borohydride oxidation. Dalton Trans 50:10168–10179. https://doi.org/10.1039/D1DT01031J

    Article  CAS  Google Scholar 

  73. Zhang J, Cao XY, Guo M, Wang HN, Saunders M, Xiang Y, Jiang SP, Lu SF (2019) Unique Ni crystalline core/Ni phosphide amorphous shell heterostructured electrocatalyst for hydrazine oxidation reaction of fuel cells. ACS Appl Mater Interfaces 11:19048–19055. https://doi.org/10.1021/acsami.9b00878

    Article  CAS  Google Scholar 

  74. Hu BH, Chen P, Xu CL, Meng JZ, Cai JL, Yang Y, Zhang B, Yu DM, Zhou XY, Chen CG (2022) Hierarchical leaf-shaped Ni@Zn bimetallic catalyst with high stability and selectivity for borohydride oxidation. Appl Catal B 307:121183. https://doi.org/10.1016/j.apcatb.2022.12118

    Article  CAS  Google Scholar 

  75. Li S, Shu CY, Chen YZ, Wang L (2018) A new application of nickel-boron amorphous alloy nanoparticles: anode-catalyzed direct borohydride fuel cell. Ionics 24:201–209. https://doi.org/10.1007/s11581-017-2180-0

    Article  CAS  Google Scholar 

  76. Yin XL, Wang Q, Duan DH, Liu SB, Wang YF (2019) Amorphous NiB alloy decorated by Cu as the anode catalyst for a direct borohydride fuel cell. Int J Hydrogen Energy 44:10971–10981. https://doi.org/10.1016/j.ijhydene.2019.02.150

    Article  CAS  Google Scholar 

  77. Julkapli NM, Bagheri S (2015) Graphene supported heterogeneous catalysts: an overview. Int J Hydrogen Energy 40:948–979. https://doi.org/10.1016/j.ijhydene.2014.10.129

    Article  CAS  Google Scholar 

  78. Zhang DM, Ye K, Cheng K, Cao DX, Yin JL, Xu Y, Wang GL (2014) High electrocatalytic activity of cobalt-multiwalled carbon nanotubes-cosmetic cotton nanostructures for sodium borohydride electrooxidation. Int J Hydrogen Energy 39:9651–9657. https://doi.org/10.1016/j.ijhydene.2014.04.113

    Article  CAS  Google Scholar 

  79. Ye K, Ma XK, Huang XM, Zhang DM, Cheng K, Wang GL, Cao DX (2016) The optimal design of Co catalyst morphology on a three-dimensional carbon sponge with low cost, inducing better sodium borohydride electrooxidation activity. RSC Adv 6:41608–41617. https://doi.org/10.1039/C6RA06221K

    Article  CAS  Google Scholar 

  80. Jafarian M, Mahjani MG, Heli H, Gobal F, Khajehsharifi H, Hamedid MH (2003) A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode. Electrochim Acta 48:3423–3429. https://doi.org/10.1016/S0013-4686(03)00399-2

    Article  CAS  Google Scholar 

  81. Fan LF, Wu XQ, Guo MD, Gao YT (2007) Cobalt hydroxide film deposited on glassy carbon electrode for electrocatalytic oxidation of hydroquinone. Electrochim Acta 52:3654–3659. https://doi.org/10.1016/j.electacta.2006.10.027

    Article  CAS  Google Scholar 

  82. Xu DY, Dai P, Liu XM, Cao CQ, Guo QJ (2008) Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution. J Power Sources 182:616–620. https://doi.org/10.1016/j.jpowsour.2008.04.018

    Article  CAS  Google Scholar 

  83. Qin HY, Liu ZX, Ye LQ, Zhu JK, Li ZP (2009) The use of polypyrrole modified carbon-supported cobalt hydroxide as cathode and anode catalysts for the direct borohydride fuel cell. J Power Sources 192:385–390. https://doi.org/10.1016/j.jpowsour.2009.03.006

    Article  CAS  Google Scholar 

  84. Qin HY, Liu ZX, Lao SJ, Zhu JK, Li ZP (2010) Influences of carbon support on the electrocatalysis of polypyrrole-modified cobalt hydroxide in the direct borohydride fuel cell. J Power Sources 195:3124–3129. https://doi.org/10.1016/j.jpowsour.2009.12.001

    Article  CAS  Google Scholar 

  85. Qin HY, Lin LX, Jia JK, Ni HL, He Y, Wang J, Li AG, Jia ZG, Liu JB (2017) Synchrotron radiation in situ X-ray absorption fine structure and in situ X-ray diffraction analysis of a high-performance cobalt catalyst towards the oxygen reduction reaction. Phys Chem Chem Phys 19:30749–30755. https://doi.org/10.1039/c7cp05888h

    Article  CAS  Google Scholar 

  86. Liu Y, Ma JF, Lai JH, Liu YN (2009) Study of LaCoO3 as a cathode catalyst for a membraneless direct borohydride fuel cell. J Alloys Compd 488:204–207. https://doi.org/10.1016/j.jallcom.2009.08.079

    Article  CAS  Google Scholar 

  87. Ma JF, Wang J, Liu YN (2007) Iron phthalocyanine as a cathode catalyst for a direct borohydride fuel cell. J Power Sources 172:220–224. https://doi.org/10.1016/j.jpowsour.2007.07.031

    Article  CAS  Google Scholar 

  88. Li S, Liu YN, Liu Y, Chen YZ (2010) Study of CoO as an anode catalyst for a membraneless direct borohydride fuel cell. J Power Sources 195:7202–7206. https://doi.org/10.1016/j.jpowsour.2010.05.016

    Article  CAS  Google Scholar 

  89. Yang XD, Liu YN, Li S, Wei XZ, Wang L, Chen YZ (2012) A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts. Sci Rep 2:567. https://doi.org/10.1038/srep00567

    Article  CAS  Google Scholar 

  90. Yang XD, Wei XZ, Liu C, Liu YN (2014) The electrocatalytic application of RuO2 in direct borohydride fuel cells. Mater Chem Phys 145:269–273. https://doi.org/10.1016/j.matchemphys.2014.01.044

    Article  CAS  Google Scholar 

  91. Ma JF, Gao XY, Wang DW, Xue T, Yang SL (2017) Effect of cobalt precursors on Co3O4 anodic catalyst for a membrane-free direct borohydride fuel cell. J Alloys Compd 724:474–480. https://doi.org/10.1016/j.jallcom.2017.07.041

    Article  CAS  Google Scholar 

  92. Ma JF, Yu C, Zhu YJ, Xue W, Luo M (2017) Co3O4 Electrocatalysis BH4- and its application in DBFC fuel cell stack. Chin J Power Sources 41(1409–1412):1002–087X

    Google Scholar 

  93. Tamašauskaitė-Tamašiūnaitė L, Lichušina S, Balčiūnaitė A, Zabielaite A, Simkunaite D, Vaiciuniene J, Selskis A, Norkus E (2015) Zinc-Cobalt alloy deposited on the titanium surface as electrocatalysts for borohydride oxidation. J Electrochem Soc 162:F348. https://doi.org/10.1149/06129.0049ECST

    Article  Google Scholar 

  94. Hansu TA, Caglar A, Sahin O, Kivrak H (2020) Hydrolysis and electrooxidation of sodium borohydride on novel CNT supported CoBi fuel cell catalyst. Mater Chem Phys 239:122031. https://doi.org/10.1016/j.matchemphys.2019.122031

    Article  CAS  Google Scholar 

  95. Gao XY (2018) Investigation of non-noble metal catalysts for direct borohydride fuel cell. North Minzu University, Thesis for Master

    Google Scholar 

  96. Guo SQ, Sun J, Zhang ZY, Sheng A, Gao M, Wang ZB, Zhao B, Ding WP (2017) Study of the electrooxidation of borohydride on a directly formed CoB/Ni-foam electrode and its application in membraneless direct borohydride fuel cells. J Mater Chem A 5:15879–15890. https://doi.org/10.1039/C7TA03464D

    Article  CAS  Google Scholar 

  97. Li S, Yang XD, Zhu HY, Chen YZ, Liu YN (2011) Investigation of amorphous CoB alloy as the anode catalyst for a direct borohydride fuel cell. J Power Sources 196:5858–5862. https://doi.org/10.1016/j.jpowsour.2011.02.016

    Article  CAS  Google Scholar 

  98. Li S, Yang XD, Zhu HY, Wei XZ, Liu YN (2013) Ultrafine amorphous Co-W-B alloy as the anode catalyst for a direct borohydride fuel cell. Int J Hydrogen Energy 38:2884–2888. https://doi.org/10.1016/j.ijhydene.2012.11.148

    Article  CAS  Google Scholar 

  99. Ma J, Sahai Y, Buchheit RG (2010) Direct borohydride fuel cell using Ni-based composite anodes. J Power Sources 195:4709–4713. https://doi.org/10.1016/j.jpowsour.2010.02.034

    Article  CAS  Google Scholar 

  100. Ma J, Gao X, Li J, Li H (2019) Promoting effect of tin on binder-free CoSnx-B/Ni-foam catalysts for fuel conversion efficiency in direct borohydride fuel cell. Fuel Cells 19:609–615. https://doi.org/10.1002/fuce.201800180

    Article  CAS  Google Scholar 

  101. Ma JF, Li J, Yang SL, Lu H, Liu LM, Wang RP (2020) Ultrathin veil-like SnO2 supported Co3O4 nanoparticles for direct borohydride fuel cell anode. J Power Sources 453:227866. https://doi.org/10.1016/j.jpowsour.2020.227866

    Article  CAS  Google Scholar 

  102. Ma JF, Liu YN, Liu Y, Zhang P (2008) A membraneless direct borohydride fuel cell using LaNiO3-catalysed cathode. Fuel Cells 8:394–398. https://doi.org/10.1002/fuce.200800048

    Article  CAS  Google Scholar 

  103. Guo MS, Cheng Y, Yu YN, Hu JB (2017) Ni-Co nanoparticles immobilized on a 3D Ni foam template as a highly efficient catalyst for borohydride electrooxidation in alkaline medium. Appl Surf Sci 416:439–445. https://doi.org/10.1016/j.apsusc.2017.04.193

    Article  CAS  Google Scholar 

  104. Li BP, Yan Q, Song CY, Yan P, Ye K, Cheng K, Zhu K, Yan J, Cao DX, Wang GL (2019) Reduced graphene oxide foam supported CoNi nanosheets as an efficient anode catalyst for direct borohydride hydrogen peroxide fuel cell. Appl Surf Sci 491:659–669. https://doi.org/10.1016/j.apsusc.2019.06.110

    Article  CAS  Google Scholar 

  105. Saha S, Ganguly S, Banerjee D, Kargupta K (2015) Novel bimetallic graphene-cobalt-nickel (G-Co-Ni) nano-ensemble electrocatalyst for enhanced borohydride oxidation. Int J Hydrogen Energy 40:1760–1773. https://doi.org/10.1016/j.ijhydene.2014.11.143

    Article  CAS  Google Scholar 

  106. Duan YE, Li S, Tan Q, Chen YZ, Zou KY, Dai X, Bayati M, Xu BB, Dala L, Liu XT (2021) Cobalt nickel boride nanocomposite as high-performance anode catalyst for direct borohydride fuel cell. Int J Hydrogen Energy 46:15471–15481. https://doi.org/10.1016/j.ijhydene.2021.02.064

    Article  CAS  Google Scholar 

  107. Mitov M, Hristov G, Hristova E, Rashkov R, Arnaudova M, Zielonka A (2009) Complex performance of novel CoNiMnB electrodeposits in alkaline borohydride solutions. Environ Chem Lett 7:167–173. https://doi.org/10.1007/s10311-008-0153-2

    Article  CAS  Google Scholar 

  108. Mitov MY, Hristov GY, Rashkov RS, Hubenova YV (2015) Quaternary electrodeposits on nickel-foam for application in a hybrid direct borohydride fuel cell-hydrogen-on-demand System. Bulg Chem Commun 47:995–1001

Download references

Funding

This work is supported by Research Program on Carbon Peaking and Carbon Neutrality at Universities of Inner Mongolia Autonomous Region (STZX202207), Inner Mongolia Autonomous Region Science and Technology Plan Project (2023YFHH0059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Tian.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tian, X., Ji, M. et al. Research Progress of Transition Metal Anode Catalysts for Direct Borohydride Fuel Cells. J Nanopart Res 25, 240 (2023). https://doi.org/10.1007/s11051-023-05890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05890-4

Keywords

Navigation