Skip to main content
Log in

Fabrication of \(\text {Ni-NiBi}_3\) ferromagnet-superconductor nano particles

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles with an additional functional component are appealing systems for fundamental and applied research. Although a wide range of multifunctional magnetic nanoparticles have been reported in the literature, ferromagnet-superconductor nanoparticle systems are rare. Here, we report the fabrication of a ferromagnet-superconductor nanoparticle system via a fully physical route. As the intermetallic superconducting compound NiBi\(_3\) forms spontaneously at the interface between Ni and Bi layers, we first formed Ni nanoparticles, with sizes ranging between 50 and 200 nm, by thermal dewetting of Ni films on a Si/SiO\(_2\) substrates. A very thin layer of Bi was deposited on top to allow the formation of NiBi\(_3\) at the Bi-Ni interface by reaction-diffusion process. The formation of NiBi\(_3\) on the boundary of Ni particles was confirmed via high-resolution transmission electron microscopy and superconducting transition in the NiBi\(_3\) was verified by magnetometry. The as dewetted, bare Ni nanoparticles showed superparamagnetic behavior, typical of a collection of single-domain ferromagnetic nanoparticles. Temperature-dependent magnetization showed an evolution of diamagnetic response below 4 K over a period of 2 weeks, indicating the gradual formation of the superconducting NiBi\(_3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kianfar E (2021) Magnetic nanoparticles in targeted drug delivery: a review. J Supercond Nov Magn 34(7):1709–1735. https://doi.org/10.1007/s10948-021-05932-9

    Article  CAS  Google Scholar 

  2. Albinali KE, Zagho MM, Deng Y, Elzatahry AA (2019) A perspective on magnetic core shell carriers for responsive and targeted drug delivery systems. Int J Nanomedicine 14:1707

    Article  CAS  Google Scholar 

  3. Singh RS, Sarswat PK (2023) From fundamentals to applications: the development of magnetoplasmonics for next generation technologies. Mater Today Electron 4. https://doi.org/10.1016/j.mtelec.2023.100033

  4. Levin CS, Hofmann C, Ali TA, Kelly AT, Morosan E, Nordlander P, Whitmire KH, Halas NJ (2009) Magnetic-plasmonic core-shell nanoparticles. ACS Nano 3(6):1379. https://doi.org/10.1021/nn900118a. PMID: 19441794

  5. Liu X, Pichon BP, Ulhaq C, Lef\(\grave{e}\)vre C, Gren\(\grave{e}\)che J-M, B\(\acute{e}\)gin D, B\(\acute{e}\)gin-Colin S, (2015) Systematic study of exchange coupling in core-shell \(\rm {Fe}_{3-\delta }\rm {O}_{4}\rm {@CoO}\) nanoparticles. Chem Mater 27(11):4073–4081. https://doi.org/10.1021/acs.chemmater.5b01103

  6. Ramos-Guivar JA, Tamanaha-Vegas CA, Litterst FJ, Passamani EC (2021) Magnetic simulations of core-shell ferromagnetic bi-magnetic nanoparticles: the influence of antiferromagnetic interfacial exchange. Nanomaterials 11(6). https://doi.org/10.3390/nano11061381

  7. Patsopoulos A, Kechrakos D, Moutis N (2019) Magnetic properties of nanowires with ferromagnetic core and antiferromagnetic shell. J Magn Magn Mater 475:171–175. https://doi.org/10.1016/j.jmmm.2018.11.100

    Article  CAS  Google Scholar 

  8. L\(\acute{o}\)pez-Ortega A, Estrader M, Salazar-Alvarez G, Roca AG, Nogu\(\acute{e}\)s J, (2015) Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Physics Reports 553:1–32. https://doi.org/10.1016/j.physrep.2014.09.007

  9. Eschrig M (2015) Spin-polarized supercurrents for spintronics: a review of current progress. Rep Prog Phys 78(10):104501. https://doi.org/10.1088/0034-4885/78/10/104501

    Article  Google Scholar 

  10. Salikhov RI, Garifullin IA, Garif’yanov NN, Tagirov LR, Theis-Bröhl K, Westerholt K, Zabel H (2009) Experimental observation of the spin screening effect in superconductor/ferromagnet thin film heterostructures. Phys Rev Lett 102:087003

    Article  CAS  Google Scholar 

  11. Buzdin AI (2005) Proximity effects in superconductor - ferromagnet heterostructures. Rev Mod Phys 77:935–976

  12. Efetov KB, Garifullin IA, Volkov AF, Westerholt K (2008). In: Zabel H, Bader SD (eds) Magnetic heterostructures: advances and perspectives in spinstructures and spintransport, pp 251–290. Springer, Berlin, Heidelberg

  13. Bergeret FS, Volkov AF, Efetov KB (2005) Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev Mod Phys 77:1321–1373

    Article  CAS  Google Scholar 

  14. Robinson JWA, Piano S, Burnell G, Bell C, Blamire MG (2006) Critical current oscillations in strong ferromagnetic \(\pi \) junctions. Phys Rev Lett 97:177003. https://doi.org/10.1103/PhysRevLett.97.177003

    Article  CAS  Google Scholar 

  15. Zeng J, Chen L, Zhong X, Wang Y, Pan Y, Zhang D, Yu S, Wu L, Zhang L, Peng W, Wang Z, (2022) Nonvolatile memory cell using a superconducting-ferromagnetic \(\pi \) Josephson junctions. Supercond Sci Technol 35:105009. https://doi.org/10.1088/1361-6668/ac80d9

  16. Khaire TS, Khasawneh MA, Pratt WP, Birge NO (2010) Observation of spin-triplet superconductivity in Co-based Josephson junctions. Phys Rev Lett 104. https://doi.org/10.1103/PhysRevLett.104.137002

  17. Robinson JWA, Witt JDS, Blamire MG (2010) Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 329(5987):59–61. https://doi.org/10.1126/science.1189246

    Article  CAS  Google Scholar 

  18. Bhatia E, Srivastava A, Devine-Stoneman J, Stelmashenko NA, Barber ZH, Robinson JWA, Senapati K (2021) Nanoscale domain wall engineered spin-triplet Josephson junctions and squid. Nano Letters 21(7):3092–3097. https://doi.org/10.1021/acs.nanolett.1c00273. PMID: 33724857

  19. Hsu C-K, Hsu D, Wu C-M, Li C-Y, Hung C-H, Lee C-H, Li W-H (2011) Coexistence of ferromagnetism and superconductivity in Pb – PbO core/shell nanoparticles. J Appl Phys 109(7):07–528

  20. Wang X-L, Feygenson M, Aronson MC, Han W-Q (2010) \(\rm {Sn/SnO}_{x}\) core-shell nanospheres: synthesis, anode performance in Li ion batteries, and superconductivity. J Phys Chem C 114:14697–14703

  21. Siva V, Senapati K, Satpati B, Prusty S, Avasthi DK, Kanjilal D, Sahoo PK (2015) Spontaneous formation of superconducting \(\rm {NiBi}_{3}\) phase in Ni – Bi bilayer films. J Appl Phys 117(8):083902

  22. Siva V, Pradhan PC, Santosh Babu G, Nayak M, Sahoo PK, Senapati K (2016) Superconducting proximity effect in \(\rm {NiBi}_{3}\) – Ni – \(\rm {NiBi}_{3}\) trilayer system with sharp superconductor-ferromagnet boundaries. J Appl Phys 119(6):063902

  23. Liu L, Xing Y, Merino ILC, Henriques MDR, D\(\acute{o}\)ria M, Sol\(\acute{o}\)rzano IG, Baggio-Saitovitch E, (2021) Spontaneous morphology and phase modification driven by sequence of deposition in superconducting Ni – Bi bilayers. Mater Chem Phys 260:124112

  24. Fujimori Y, Kan S-i, Shinozaki B, Kawaguti T (2000) Superconducting and normal state properties of \(\rm NiBi_3 \). J Phys Soc Jpn 69(9):3017–3026

    Article  CAS  Google Scholar 

  25. Vaughan M, Satchell N, Ali M, Kinane CJ, Stenning GBG, Langridge S, Burnell G (2020) Origin of superconductivity at nickel-bismuth interfaces. Phys Rev Research 2:013270

    Article  CAS  Google Scholar 

  26. Duchenko OV, Dybkov VI (1995) Determination of \(\rm {NiBi}_{3}\) reaction-diffusion constants in Ni – Bi couples. J Mater Sci Lett 14(24):1725. https://doi.org/10.1007/BF00270989

  27. Vassilev GP, Romanowska J, Wnuk G (2007) Bismuth activity measurements and thermodynamic re-optimization of the Ni – Bi system. International Journal of Materials Research 98(6):468–475. https://doi.org/10.3139/146.101499

  28. Das B, Senapati TR, Yadav AK, Umapathy GR, Jha SN, Senapati K, Sahoo PK (2023) Reaction-diffusion-driven stoichiometric gradient in coevaporated superconducting \(\rm NiBi_3 \) Thin Films. Cryst Growth Des 23(2):980–988. https://doi.org/10.1021/acs.cgd.2c01150

    Article  CAS  Google Scholar 

  29. Leroy F, Borowik L, Cheynis F, Almadori Y, Curiotto S, Trautmann M, Barb\(\acute{e}\) JC, M\(\ddot{u}\)ller P (2016) How to control solid state dewetting: a short review. Surf Sci Rep 71(2):391–409. https://doi.org/10.1016/j.surfrep.2016.03.002

  30. Luber EJ, Olsen BC, Ophus C, Mitlin D (2010) Solid-state dewetting mechanisms of ultrathin ni films revealed by combining in situ time resolved differential reflectometry monitoring and atomic force microscopy. Phys Rev B 82:085407

    Article  Google Scholar 

  31. Glasner KB, Witelski TP (2003) Coarsening dynamics of dewetting films. Phys Rev E 67:016302

    Article  CAS  Google Scholar 

  32. Kotni TR, Sarkar J, Khanna R (2022) Dewetting of thin wetting film supported by different solid substrates: a review. Phase Transit 95:551. https://doi.org/10.1080/01411594.2022.2094267

    Article  CAS  Google Scholar 

  33. Sahu P, Prasad BLV (2014) Time and temperature effects on the digestive ripening of gold nanoparticles: is there a crossover from digestive ripening to ostwald ripening? Langmuir 30(34):10143–10150

    Article  CAS  Google Scholar 

  34. Prozorov R, Yeshurun Y, Prozorov T, Gedanken A (1999) Magnetic irreversibility and relaxation in assembly of ferromagnetic nanoparticles. Phys Rev B 59:6956–6965

    Article  CAS  Google Scholar 

  35. Zhang P, Zuo F, Urban FK, Khabari A, Griffiths P, Hosseini-Tehrani A (2001) Irreversible magnetization in nickel nanoparticles. J Magn Magn Mater 225(3):337–345

  36. Rana B, Barman A (2015) Ultrafast magnetization dynamics of chemically synthesized Ni nanoparticles. J Phys Chem C 119(30):17444–17449. https://doi.org/10.1021/acs.jpcc.5b04759

    Article  CAS  Google Scholar 

  37. Mohapatra J, Liu JP (2018) Chapter 1 - rare earth free permanent magnets: the past and future. Handbook of Magnetic Materials, vol 27, pp 1–57. Elsevier. https://doi.org/10.1016/bs.hmm.2018.08.001

  38. Mamiya H, Jeyadevan B (2014) Magnetic hysteresis loop in a superparamagnetic state. IEEE Trans Magn 50(1):1–4

    Article  Google Scholar 

  39. Popkov SI, Krasikov AA, Dubrovskiy AA, Volochaev MN, Kirillov VL, Martyanov ON, Balaev DA (2019) Size effects in the formation of an uncompensated ferromagnetic moment in nio nanoparticles. J Appl Phys 126:103904

    Article  Google Scholar 

  40. Qin X, Sui C, Di L (2019) Influence of substrate temperature on the morphology and structure of bismuth thin films deposited by magnetron sputtering. Vacuum 166:316–322. https://doi.org/10.1016/j.vacuum.2019.05.026

    Article  CAS  Google Scholar 

  41. Lazzari R, Leroy F, Renaud G (2007) Grazing-incidence small-angle x-ray scattering from dense packing of islands on surfaces: development of distorted wave born approximation and correlation between particle sizes and spacing. Phys Rev B 76. https://doi.org/10.1103/PhysRevB.76.125411

  42. Greve CR, Kuhn M, Eller F, Buchhorn MA, Hexemer A, Freychet G, Weigart L, Herzig EM (2023) Effects of the grazing incidence geometry on X-ray photon correlation spectroscopy measurements. Langmuir 39:8215. https://doi.org/10.1021/acs.langmuir.3c00669

  43. Huang W, Sun M, Wen W, Yang J, Xie Z, Liu R, Wang X, Wu X, Fang Q, Liu C (2022) Strain profile in the subsurface of he-ion-irradiated tungsten accessed by s-gixrd. Crystals 12(5). https://doi.org/10.3390/cryst12050691

  44. Momma K, Izumi F (2011) VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  45. Sheikhi R, Cho J (2018) Growth kinetics of bismuth nickel intermetallics. J Mater Sci: Mater Electron 29(22):19034–19042. https://doi.org/10.1007/s10854-018-0029-6

    Article  CAS  Google Scholar 

  46. Kubozono Y, Mitamura H, Lee X, He X, Yamanari Y, Takahashi Y, Suzuki Y, Kaji Y, Eguchi R, Akaike K, Kambe T, Okamoto H, Fujiwara A, Kato T, Kosugi T, Aoki H (2011) Metal intercalated aromatic hydrocarbons: a new class of carbon based superconductors. Phys Chem Chem Phys 13:16476

    Article  CAS  Google Scholar 

  47. Zhong G-H, Yang D-Y, Zhang K, Wang R-S, Zhang C, Lin H-Q, Chen X-J (2018) Superconductivity and phase stability of potassium doped biphenyl. Phys Chem Chem Phys 20:25217

    Article  CAS  Google Scholar 

  48. Zhu X, Lei H, Petrovic C, Zhang Y (2012) Surface-induced magnetic fluctuations in a single-crystal \(\rm NiBi_3 \) superconductor. Phys Rev B 86:024527

    Article  Google Scholar 

  49. Kumar J, Kumar A, Vajpayee A, Gahtori B, Sharma D, Ahluwalia PK, Auluck S, Awana VPS (2011) Physical property and electronic structure characterization of bulk superconducting \(\rm Bi_3Ni \). Supercond Sci Technol 24(8):085002

    Article  Google Scholar 

  50. LeClair P, Moodera JS, Philip J, Heiman D (2005) Coexistence of ferromagnetism and superconductivity in Ni/Bi bilayers. Phys Rev Lett 94:037006

  51. Gong X-X, Zhou H-X, Xu P-C, Yue D, Zhu K, Jin X-F, Tian H, Zhao G-J, Chen T-Y (2015) Possible p-wave superconductivity in epitaxial bi/ni bilayers. Chin Phys Lett 32(6):067402. https://doi.org/10.1088/0256-307X/32/6/067402

    Article  CAS  Google Scholar 

  52. Gong X, Kargarian M, Stern A, Yue D, Zhou H, Jin X, Galitski VM, Yakovenko VM, Xia J (2017) Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers. Sci Adv 3(3):1602579. https://doi.org/10.1126/sciadv.1602579

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge National Institute of Science Education and Research(NISER), DAE for supporting the work through plan project RIN-4001.

Author information

Authors and Affiliations

Authors

Contributions

LN: investigation, formal analysis, writing—original draft. SS: investigation. PKS: formal analysis, writing—review and editing. KS: supervision, formal analysis, writing—review and editing.

Corresponding authors

Correspondence to Pratap K. Sahoo or Kartik Senapati.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanda, L., Sahoo, S., Sahoo, P.K. et al. Fabrication of \(\text {Ni-NiBi}_3\) ferromagnet-superconductor nano particles. J Nanopart Res 25, 251 (2023). https://doi.org/10.1007/s11051-023-05877-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05877-1

Keywords

Navigation