Skip to main content
Log in

Development of nanostructured silver layers via colloidal lithography for AZO/Ag/AZO transparent conductive oxide applications

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Colloidal lithography is a cost-effective and scalable technique for producing nanostructures with defined shapes and sizes. In this study, colloidal lithography was utilized to fabricate nanostructured silver layers for a three-layer transparent conductive oxide AZO/Ag/AZO. The silver nanostructures were deposited onto an aluminum-doped zinc oxide (AZO) substrate via RF sputtering at room temperature and served as the conductive layer in the AZO/Ag/AZO stack. The resulting nanostructured silver layer exhibited a peak of 93% transmittance in the 300–400 nm range and a steady value of 61% in the 400–1000 nm range. The sheet resistance value was 9.3 Ω/sq for the 15 nm Ag film after polystyrene nanospheres (PS) were chemically removed; it showed improved electrical conductivity and transparency compared to traditional AZO layers. Scanning electron microscopy (SEM) images revealed a disordered, random distribution of the PS in the films. The incorporation of the optimized nanostructured silver layer in this structure resulted in highly competent transparent conductive oxide (TCO), whose performance was evaluated using a figure of merit. This work demonstrates the potential of colloidal lithography for the fabrication of nanostructured silver layers in transparent conductive oxides, opening new alternatives for the development of low-cost and highly efficient transparent conductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Chasta G, Suthar D, Thakur A et al (2022) Comprehensive investigation on influence of copper doping on physical properties of CdSe thin films for solar cell applications. Mater Res Bull 152:111845

    Article  Google Scholar 

  2. Chasta G, Thakur A, Dhaka MS (2023) Unveiling the influence of Zn dopant concentration on physical properties of cadmoselite films for absorber layer photovoltaic applications. Phys B Condens Matter 661:414923

    Article  Google Scholar 

  3. Dhaka MS (2023) Modulating the structural, optical, electrical and topographical features of CdSe: Bi films with annealing: role as promising absorber to solar cells. Micro and Nanostructures 178:207570

    Article  Google Scholar 

  4. Sharma R, Chuhadiya S, Thakur A, Dhaka MS (2022) Heat treatment induced structural, optical, electrical and surface topographical characteristics of CdSe: Zn films: functionality as absorber layer. Opt Mater (Amst) 126:112180

    Article  Google Scholar 

  5. Ginley DS, Perkins JD (2011) Transparent conductors. In: Handbook of transparent conductors. Springer, pp 1–25

    Chapter  Google Scholar 

  6. Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23:1482–1513

    Article  CAS  Google Scholar 

  7. Guillen C, Herrero J (2011) TCO/metal/TCO structures for energy and flexible electronics. Thin Solid Films 520:1–17

    Article  CAS  Google Scholar 

  8. Boscarino S, Crupi I, Mirabella S et al (2014) TCO/Ag/TCO transparent electrodes for solar cells application. Appl Phys A 116:1287–1291

    Article  CAS  Google Scholar 

  9. Abachi T, Cattin L, Louarn G et al (2013) Highly flexible, conductive and transparent MoO3/Ag/MoO3 multilayer electrode for organic photovoltaic cells. Thin Solid Films 545:438–444

    Article  CAS  Google Scholar 

  10. Aydin E, Sankir ND (2018) AZO/metal/AZO transparent conductive oxide thin films for spray pyrolyzed copper indium sulfide based solar cells. Thin Solid Films 653:29–36

    Article  CAS  Google Scholar 

  11. Torrisi G, Crupi I, Mirabella S, Terrasi A (2017) Robustness and electrical reliability of AZO/Ag/AZO thin film after bending stress. Sol Energy Mater Sol Cells 165:88–93

    Article  CAS  Google Scholar 

  12. Kim A, Won Y, Woo K et al (2013) Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7:1081–1091

    Article  CAS  Google Scholar 

  13. Nakanishi Y, Miyake A, Kominami H et al (1999) Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation. Appl Surf Sci 142:233–236. https://doi.org/10.1016/S0169-4332(98)00654-0

    Article  CAS  Google Scholar 

  14. Jin BJ, Woo HS, Im S et al (2001) Relationship between photoluminescence and electrical properties of ZnO thin films grown by pulsed laser deposition. Appl Surf Sci 169–170:521–524. https://doi.org/10.1016/S0169-4332(00)00751-0

    Article  Google Scholar 

  15. Sahu DR, Huang JL (2006) High quality transparent conductive ZnO/Ag/ZnO multilayer films deposited at room temperature. Thin Solid Films 515:876–879. https://doi.org/10.1016/j.tsf.2006.07.049

    Article  CAS  Google Scholar 

  16. Abdellatif MH, Azab AA (2018) Fractal growth of ferrite nanoparticles prepared by citrate-gel auto-combustion method. Silicon 10:1991–1997

    Article  CAS  Google Scholar 

  17. Abdellatif MH, Azab AA (2019) Elastic properties of Cr-doped Mn ferrite. Bull Natl Res Cent 43:1–8

    Article  Google Scholar 

  18. Wang D, Möhwald H (2004) Rapid fabrication of binary colloidal crystals by stepwise spin-coating. Adv Mater 16:244–247

    Article  CAS  Google Scholar 

  19. Yang S, Jang SG, Choi D et al (2006) Nanomachining by colloidal lithography. Small 2:458–475

    Article  CAS  Google Scholar 

  20. Luo C-L, Yang R-X, Yan W-G et al (2016) Rapid fabrication of large area binary polystyrene colloidal crystals. Superlattices Microstruct 95:33–37

    Article  CAS  Google Scholar 

  21. Zhao Y, Marshall JS (2008) Spin coating of a colloidal suspension. Phys Fluids 20:43302

    Article  Google Scholar 

  22. Chen HL, Chuang SY, Lin C-H, Lin YH (2007) Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells. Opt Express 15:14793–14803

    Article  CAS  Google Scholar 

  23. Yu Y, Zhang G (2013) Colloidal lithography. Updat Adv Lithogr 8:3–34

    Google Scholar 

  24. Balderas-Valadez RF, Estévez-Espinoza JO, Salazar-Kuri U et al (2018) Fabrication of ordered tubular porous silicon structures by colloidal lithography and metal assisted chemical etching: SERS performance of 2D porous silicon structures. Appl Surf Sci 462:783–790

    Article  CAS  Google Scholar 

  25. Arita S, Yamaguchi K, Motokucho S, Nakatani H (2017) Selective decomposition of hexabromocyclododecane in polystyrene with a photo and thermal hybrid treatment system. Polym Degrad Stab 143:130–135

    Article  CAS  Google Scholar 

  26. Homonnay N, Geyer N, Fuhrmann B, Leipner HS (2012) Advanced colloidal lithography for sub-100 nm lift-off structures. Vacuum 86:1232–1234

    Article  CAS  Google Scholar 

  27. Ai B, Yu Y, Möhwald H et al (2014) Plasmonic films based on colloidal lithography. Adv Colloid Interface Sci 206:5–16

    Article  CAS  Google Scholar 

  28. Acosta M, Mendez-Gamboa J, Riech I et al (2019) AZO/Ag/AZO multilayers electrodes evaluated using a photonic flux density figure of merit for solar cells applications. Superlattices Microstruct 127:49–53

    Article  CAS  Google Scholar 

  29. Castillo RH, Peñuñuri F, Canto-Reyes D et al (2020) Electrical percolation threshold evaluation of silver thin films for multilayer WO3/Ag/WO3 transparent conductive oxide. Mater Lett 260:2019–2021. https://doi.org/10.1016/j.matlet.2019.126913

    Article  CAS  Google Scholar 

  30. Filip AV, Sava BA, Medianu RV et al (2022) Ultrathin films of silver by Magnetron Sputtering. Inorganics 10:235

    Article  CAS  Google Scholar 

  31. Xu G, Tazawa M, Jin P, Nakao S (2005) Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence. Appl Phys A 80:1535–1540

    Article  CAS  Google Scholar 

  32. Yoon W-J, Jung K-Y, Liu J et al (2010) Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles. Sol Energy Mater Sol Cells 94:128–132

    Article  CAS  Google Scholar 

  33. Mock JJ, Barbic M, Smith DR et al (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759

    Article  CAS  Google Scholar 

  34. Royer P, Goudonnet JP, Warmack RJ, Ferrell TL (1987) Substrate effects on surface-plasmon spectra in metal-island films. Phys Rev B 35:3753

    Article  CAS  Google Scholar 

  35. Tauc JJ (1974) Amorphous and liquid semiconductors. Plenum, London

  36. Haacke G (1976) New figure of merit for transparent conductors. J Appl Phys 47:4086–4089

    Article  CAS  Google Scholar 

  37. Rayerfrancis A, Bhargav BP, Ahmed N et al (2018) Effect of Ag incorporation on the electrical and optical properties of AZO/Ag/AZO multilayer transparent conducting electrode. Eur Phys J Appl Phys 82:20301

    Article  CAS  Google Scholar 

  38. Sutthana S, Hongsith N, Choopun S (2010) AZO/Ag/AZO multilayer films prepared by DC magnetron sputtering for dye-sensitized solar cell application. Curr Appl Phys 10:813–816

    Article  Google Scholar 

  39. Castillo RH, Canto-Reyes D, Pool AB et al (2021) Influence of top layer thickness on the performance of WO3/Ag/WO3-transparent electrodes. J Mater Sci: Mater Electron 32:19063–19069. https://doi.org/10.1007/s10854-021-06422-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CONACYT-SENER under contract 254667. A. Borges and R. Hernandez acknowledge the CONACyT postgraduate scholarship program. The authors thank the LANNBIO Nano-Biomaterials Laboratory (CINVESTAV-IPN Unidad Merida) for the access to SEM measurements.

Author information

Authors and Affiliations

Authors

Contributions

A. Borges Pool: conceptualization, methodology, validation, investigation, data curation, formal analysis, writing – original draft, writing – review and editing

R. Hernández Castillo: data curation, formal analysis, writing – original draft, writing – review and editing, visualization

D. Canto-Reyes: investigation, data curation, writing – original draft, writing – review and editing

R. Castro-Rodriguez: conceptualization, validation, resources, writing – review and editing

I. V. Pérez-Quintana: resources, writing – review and editing.

M. Acosta: formal analysis, writing – review and editing, funding acquisition

J. A. Mendez-Gamboa: conceptualization, methodology, investigation, validation, supervision, writing – review and editing, visualization, project administration, funding acquisition.

Corresponding author

Correspondence to J. A. Mendez-Gamboa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pool, A.B., Castillo, R.H., Canto-Reyes, D. et al. Development of nanostructured silver layers via colloidal lithography for AZO/Ag/AZO transparent conductive oxide applications. J Nanopart Res 25, 219 (2023). https://doi.org/10.1007/s11051-023-05868-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05868-2

Keywords

Navigation