Skip to main content
Log in

Tetrahedral DNA–mediated biomineralization of calcium carbonate nanoparticles for pH-responsive drug delivery

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The objective of this study is to harness the potential of biomineralization for the controlled fabrication of tetrahedral DNA (TDN)-mediated calcium carbonate (CaCO3) nanoparticles with applications in cancer therapy. While TDN has emerged as an efficient anti-cancer drug carrier, its inherent instability under physiological conditions poses challenges for sustained drug release. Biomineralization, known for its ability to maintain carrier morphology and stability in physiological environments, is leveraged in this research to enhance TDN’s drug delivery capabilities. In this study, we successfully synthesized TDN-mediated CaCO3 nanoparticles through a biomineralization process, with comprehensive characterization utilizing TEM, SEM, AFM, and DLS techniques. The morphology and crystal phase of the resulting CaCO3 nanoparticles, ranging from 10 to 100 nm, are precisely controlled by the presence of TDN. Remarkably, the engineered nanoparticles demonstrated efficient loading and controlled delivery of the anti-cancer drug doxorubicin (Dox), suggesting their potential for cancer therapy. The TDN-CaCO3 nanoparticles exhibited notable attributes including high drug loading efficiency (42.2%), favorable biocompatibility, pH responsiveness, and minimal cytotoxicity. The findings of this study underscore the potential of TDN-CaCO3 nanoparticles as a promising therapeutic agent for safe and effective cancer treatment, offering new avenues for innovative and efficient drug delivery strategies in the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Data will be made available on request.

References

  1. Collins MT, Marcucci G, Anders HJ, Beltrami G, Cauley JA, Ebeling PR, Kumar R, Linglart A, Sangiorgi L, Towler DA, Weston R, Whyte MP, Brandi ML, Clarke B, Thakker RV (2022) Skeletal and extraskeletal disorders of biomineralization. Nat Rev Endocrinol 18:473–489. https://doi.org/10.1038/s41574-022-00682-7

    Article  Google Scholar 

  2. Feng Z, Yang T, Liang T, Wu Z, Wu T, Zhang J, Yu L (2022) Biomineralization of calcium carbonate under amino acid carbon dots and its application in bioimaging. Mater Design 217:110644. https://doi.org/10.1016/j.matdes.2022.110644

    Article  CAS  Google Scholar 

  3. Kumar S, Natalio F, Elbaum R (2021) Protein-driven biomineralization: comparing silica formation in grass silica cells to other biomineralization processes. J Struct Biol 213:107665. https://doi.org/10.1016/j.jsb.2020.107665

    Article  CAS  Google Scholar 

  4. Cuylear DL, Elghazali NA, Kapila SD, Desai TA (2023) Calcium phosphate delivery systems for regeneration and biomineralization of mineralized tissues of the craniofacial complex. Mol Pharm 20:810–828. https://doi.org/10.1021/acs.molpharmaceut.2c00652

    Article  CAS  Google Scholar 

  5. Ben-Shimon S, Stein D, Zarivach R (2021) Current view of iron biomineralization in magnetotactic bacteria. J Struct Biol X 5:100052. https://doi.org/10.1016/j.yjsbx.2021.100052

    Article  CAS  Google Scholar 

  6. Reznikov N, Bilton M, Lari L, Stevens MM, Kröger R (2018) Fractal-like hierarchical organization of bone begins at the nanoscale. Science 360:eaao2189. https://doi.org/10.1126/science.aao2189

    Article  CAS  Google Scholar 

  7. Yan X, Huang S, Wang Y, Tang Y, Tian Y (2020) Bottom-up self-assembly based on DNA nanotechnology. Nanomaterials 10:2047. https://doi.org/10.3390/nano10102047

    Article  CAS  Google Scholar 

  8. Athanasiadou D, Carneiro KM (2021) DNA nanostructures as templates for biomineralization. Nat Rev Chem 5:93–108. https://doi.org/10.1038/s41570-020-00242-5

    Article  CAS  Google Scholar 

  9. Wang X, Shen X, Li J, Ge X, Ouyang J, Na N (2022) Biomineralization of DNA nanoframeworks for intracellular delivery, on-demand diagnosis, and synergistic cancer treatments. Anal Chem 94:16803–16812. https://doi.org/10.1021/acs.analchem.2c03726

    Article  CAS  Google Scholar 

  10. Lukeman PS, Stevenson ML, Seeman NC (2008) Morphology change of calcium carbonate in the presence of polynucleotides. Cryst Growth Des 8:1200–1202. https://doi.org/10.1021/cg700656r

    Article  CAS  Google Scholar 

  11. Kato T, Suzuki T, Amamiya T, Irie T, Komiyama M, Yui H (1998) Effects of macromolecules on the crystallization of CaCO3 the formation of organic/inorganic composites. Supramol Sci 5:411–415. https://doi.org/10.1016/S0968-5677(98)00041-8

    Article  CAS  Google Scholar 

  12. Tian T, Zhang T, Shi S, Gao Y, Cai X, Lin Y (2023) A dynamic DNA tetrahedron framework for active targeting. Nat Protoc 18:1–28. https://doi.org/10.1038/s41596-022-00791-7

    Article  CAS  Google Scholar 

  13. Xu Y, Huang SW, Ma YQ, Ding HM (2022) Loading of DOX into a tetrahedral DNA nanostructure: the corner does matter. Nanoscale Adv 4:754–760. https://doi.org/10.1039/D1NA00753J

    Article  CAS  Google Scholar 

  14. Wang Q, He Z, Zhu H, Gao W, Zhang N, Li J, Yan J, He B, Ye X (2022) Targeting drug delivery and efficient lysosomal escape for chemo-photodynamic cancer therapy by a peptide/DNA nanocomplex. J Mater Chem B 10:438–449. https://doi.org/10.1039/D1TB02441H

    Article  Google Scholar 

  15. Yan J, Zhan X, Zhang Z, Chen K, Wang M, Sun Y, He B, Liang Y (2021) Tetrahedral DNA nanostructures for effective treatment of cancer: advances and prospects. J Nanobiotechnology 19:1–16. https://doi.org/10.1186/s12951-021-01164-0

    Article  CAS  Google Scholar 

  16. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302. https://doi.org/10.1038/nature04586

    Article  CAS  Google Scholar 

  17. Guo Y, Tang J, Yao C, Yang D (2022) Multimodules integrated functional DNA nanomaterials for intelligent drug delivery. WIREs Nanomed Nanobiotechnol 14:e1753. https://doi.org/10.1002/wnan.1753

    Article  CAS  Google Scholar 

  18. Guan C, Zhu X, Feng C (2021) DNA nanodevice-based drug delivery systems. Biomolecules 11:1855. https://doi.org/10.3390/biom11121855

    Article  CAS  Google Scholar 

  19. Wang C, Yu Y, Irfan M, Xu B, Li J, Zhang L, Qin Z, Yu C, Liu H (2020) Su X (2020) Rational design of DNA framework-based hybrid nanomaterials for anticancer drug delivery. Small 16:e2002578. https://doi.org/10.1002/smll.202002578

    Article  CAS  Google Scholar 

  20. Liu X, Jing X, Liu P, Pan M, Liu Z, Dai X, Lin J, Li Q, Wang F, Yang S, Wang L, Fan C (2020) DNA framework-encoded mineralization of calcium phosphate. Chem 6:472–485. https://doi.org/10.1016/j.chempr.2019.12.003

    Article  CAS  Google Scholar 

  21. Wang T, Zheng J, Hu T, Zhang H, Fu K, Yin R, Zhang W (2021) Three-dimensional printing of calcium carbonate/hydroxyapatite scaffolds at low temperature for bone tissue engineering. 3D Print Addit Manuf 8:1–13. https://doi.org/10.1089/3dp.2020.0140

    Article  Google Scholar 

  22. Fadia P, Tyagi S, Bhagat S, Nair A, Panchal P, Dave H, Dang S, Singh S (2021) Calcium carbonate nano- and microparticles: synthesis methods and biological applications. 3 Biotech 11:1–30. https://doi.org/10.1007/s13205-021-02995-2

    Article  Google Scholar 

  23. Li K, Li D, Zhao L, Chang Y, Zhang Y, Cui Y, Zhang Z (2020) Calcium-mineralized polypeptide nanoparticle for intracellular drug delivery in osteosarcoma chemotherapy. Bioact Mater 5:721–731. https://doi.org/10.1016/j.bioactmat.2020.04.010

    Article  Google Scholar 

  24. Bai S, Lan Y, Fu S, Cheng H, Lu Z, Liu G (2022) Connecting calcium-based nanomaterials and cancer: from diagnosis to therapy. Nano-Micro Lett 14:145. https://doi.org/10.1007/s40820-022-00894-6

    Article  CAS  Google Scholar 

  25. Yu J, Wang L, Xie X, Zhu W, Lei Z, Lv L, Yu H, Xu J, Ren J (2023) Multifunctional nanoparticles codelivering doxorubicin and amorphous calcium carbonate preloaded with indocyanine green for enhanced chemo-photothermal cancer therapy. Int J Nanomed 18:323–337. https://doi.org/10.2147/IJN.S394896

    Article  CAS  Google Scholar 

  26. Sommerdijk NAJM, Leeuwen ENM, Vos MRJ, Jansen JA (2007) Calcium carbonate thin films as biomaterial coatings using DNA as crystallization inhibitor. CrystEngComm 9:1209–1214. https://doi.org/10.1039/B710277A

    Article  CAS  Google Scholar 

  27. Zeng D, Zhang H, Zhu D, Li J, San L, Wang Z, Wang C, Wang Y, Wang L, Zuo X, Mi X (2015) A novel ultrasensitive electrochemical DNA sensor based on double tetrahedral nanostructures. Biosens Bioelectron 71:434–438. https://doi.org/10.1016/j.bios.2015.04.065

    Article  CAS  Google Scholar 

  28. Xie N, Liu S, Yang X, He X, Huang J, Wang K (2017) DNA tetrahedron nanostructures for biological applications: biosensors and drug delivery. Analyst 142:3322–3332. https://doi.org/10.1039/C7AN01154G

    Article  CAS  Google Scholar 

  29. Hammadi NI, Abba Y, Hezmee MNM, Razak ISA, Jaji AZ, Isa T, Mahmood SK, Abu MZ, Zakaria MZAB (2017) Formulation of a sustained release docetaxel loaded cockle shell-derived calcium carbonate nanoparticles against breast cancer. Pharm Res 34:1193–1203. https://doi.org/10.1007/s11095-017-2135-1

    Article  CAS  Google Scholar 

  30. Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C (2018) Complex silica composite nanomaterials templated with DNA origami. Nature 559:593–598. https://doi.org/10.1038/s41586-018-0332-7

    Article  CAS  Google Scholar 

  31. Rodriguez-Navarro C, Ruiz-Agudo E, Harris J, Wolf SE (2016) Nonclassical crystallization in vivo et in vitro (II): nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism. J Struct Biol 196:260–287. https://doi.org/10.1016/j.jsb.2016.09.005

    Article  CAS  Google Scholar 

  32. Gal A, Kahil K, Vidavsky N, DeVol RT, Gilbert PU, Fratzl P, Weiner S, Addadi L (2014) Particle accretion mechanism underlies biological crystal growth from an amorphous precursor phase. Adv Funct Mater 24:5420–5426. https://doi.org/10.1002/adfm.201400676

    Article  CAS  Google Scholar 

  33. Wilson BJ, Prud’homme RK (2021) Nanoparticle size distribution quantification from transmission electron microscopy (TEM) of ruthenium tetroxide stained polymeric nanoparticles. J Colloid Interface Sci 604:208–220. https://doi.org/10.1016/j.jcis.2021.04.081

    Article  CAS  Google Scholar 

  34. Zhang J, Li Y, Xie H, Su BL, Yao B, Yin Y, Li S, Chen F, Fu Z (2015) Calcium carbonate nanoplate assemblies with directed high-energy facets: additive-free synthesis, high drug loading, and sustainable releasing. ACS Appl Mater Interfaces 7:15686–15691. https://doi.org/10.1021/acsami.5b04819

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank for Sisi Liu and Yuzhu Chen for their technical assistance.

Funding

This research was funded by the National Natural Science Foundation of China (No. 22008151), Shanghai Sailing Program (No. 20YF1418000), Climbing Program of Shanghai University of Medicine & Health Sciences (No. A3-0200–22-311008–1), High-Level Local University Construction Program of Shanghai (No. E1-2602–21-201006–1), and Academic Mentorship for Scientific Research Cadre Project (No. E3-0200–22-201007–14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongdong Zeng or Xiangde Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Sun, W., Zhang, Z. et al. Tetrahedral DNA–mediated biomineralization of calcium carbonate nanoparticles for pH-responsive drug delivery. J Nanopart Res 25, 211 (2023). https://doi.org/10.1007/s11051-023-05858-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05858-4

Keywords

Navigation