Skip to main content
Log in

Preparation of silver nanoparticles on free-standing polyaniline/cellulose acetate blend film for surface-enhanced Raman scattering application

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) has been used as a precursor for the preparation of surface-enhanced Raman scattering (SERS) substrates because of its ability to act as a reducing agent and binding site of plasmonic metal nanoparticles (NPs). However, the processability of PANI is limited due to its poor mechanical properties. In this work, a simple preparation of a free-standing polymeric blend film by mixing hydrochloric acid–doped polyaniline nanofibers (PANI) and cellulose acetate (CA) is demonstrated. This PANI/CA was used as a reducing agent for synthesizing Ag nanoparticles (AgNPs). The formation of globular NPs and cubic microstructures on the surface of the film was observed, as well as the formation of AgCl due to the presence of chloride ions in the PANI structure. The film was then treated with hydrazine to reduce AgCl to AgNPs resulting in isolated and clustered AgNPs. Rhodamine 6G dye was used as a probe molecule for SERS measurements. This new composite film PANI/CA@Ag treated with hydrazine was successfully applied as a SERS substrate. This substrate enhancement of Rhodamine 6G dye Raman bands was estimated, and the Rhodamine 6G dye could be detected even at a concentration of 10−7 mol L−1.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Mohamad Ahad IZ, Wadi Harun S, Gan SN, Phang SW (2018) Polyaniline (PAni) optical sensor in chloroform detection. Sensors Actuators B Chem 261:97–105. https://doi.org/10.1016/j.snb.2018.01.082

    Article  CAS  Google Scholar 

  2. Yuan S, Tang Q, He B, Yang P (2014) Efficient quasi-solid-state dye-sensitized solar cells employing polyaniline and polypyrrole incorporated microporous conducting gel electrolytes. J Power Sources 254:98–105. https://doi.org/10.1016/j.jpowsour.2013.12.112

    Article  CAS  Google Scholar 

  3. Bandeira RM, van Drunen J, Garcia AC, Tremiliosi-Filho G (2017) Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy. Electrochim Acta 240:215–224. https://doi.org/10.1016/j.electacta.2017.04.083

    Article  CAS  Google Scholar 

  4. Wu X, Zhang W, Wang Q, Wang Y, Yan H, Chen W (2016) Hydrogen bonding of graphene/polyaniline composites film for solid electrochromic devices. Synth Met 212:1–11. https://doi.org/10.1016/j.synthmet.2015.12.001

    Article  CAS  Google Scholar 

  5. Xu P, Han X, Zhang B, Wang H (2014) Multifunctional polymer – metal nanocomposites via direct chemical. Chem Soc Rev 43:1349–1360. https://doi.org/10.1039/c3cs60380f

    Article  CAS  Google Scholar 

  6. Huang JX (2006) Syntheses and applications of conducting polymer polyaniline nanofibers. Pure Appl Chem 78:15–27. https://doi.org/10.1351/pac200678010015

    Article  CAS  Google Scholar 

  7. Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145. https://doi.org/10.1021/ar800080n

    Article  CAS  Google Scholar 

  8. Li D, Kaner RB (2005) Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chem Commun:3286–3288. https://doi.org/10.1039/b504020e

  9. Huang W-S, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 82:2385–2400. https://doi.org/10.1039/F19868202385

    Article  CAS  Google Scholar 

  10. MacDiarmid AG, Epstein AJ (1989) Polyanilines: a novel class of conducting polymers. Faraday Discuss Chem Soc 88:317–332. https://doi.org/10.1039/DC9898800317

    Article  CAS  Google Scholar 

  11. Li W, Jia QX, Wang H-L (2006) Facile synthesis of metal nanoparticles using conducting polymer colloids. Polymer (Guildf) 47:23–26. https://doi.org/10.1016/j.polymer.2005.11.032

    Article  CAS  Google Scholar 

  12. Wang H-L, Li W, Jia QX, Akhadov E (2007) Tailoring conducting polymer chemistry for the chemical deposition of metal particles and clusters. Chem Mater 19:520–525. https://doi.org/10.1021/cm0619508

    Article  CAS  Google Scholar 

  13. Stejskal J, Trchová M, Brožová L, Prokeš J (2009) Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chem Pap 63:77–83. https://doi.org/10.2478/s11696-008-0086-z

    Article  CAS  Google Scholar 

  14. Stejskal J, Trchová M, Kovářová J, Prokeš J, Omastová M (2008) Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chem Pap 62:181–186. https://doi.org/10.2478/s11696-008-0009-z

    Article  CAS  Google Scholar 

  15. Mack NH, Bailey JA, Doorn SK, Chen C-A, Gau H-M, Xu P, Williams DJ, Akhadov EA, Wang H-L (2011) Mechanistic study of silver nanoparticle formation on conducting polymer surfaces. Langmuir 27:4979–4985. https://doi.org/10.1021/la103644j

    Article  CAS  Google Scholar 

  16. He Y, Han X, Chen D, Kang L, Jin W, Qiang R, Xu P, Du Y (2014) Chemical deposition of Ag nanostructures on polypyrrole films as active SERS substrates. RSC Adv 4:7202–7206. https://doi.org/10.1039/C3RA42577K

    Article  CAS  Google Scholar 

  17. Li S, Xiong L, Liu S, Xu P (2014) Fast fabrication of homogeneous Ag nanostructures on dual-acid doped polyaniline for SERS applications. RSC Adv 4:16121–16126. https://doi.org/10.1039/C4RA02004A

    Article  CAS  Google Scholar 

  18. Yan J, Han X, He J, Kang L, Zhang B, Du Y, Zhao H, Dong C, Wang H-L, Xu P (2012) Highly sensitive surface-enhanced Raman spectroscopy (SERS) platforms based on silver nanostructures fabricated on polyaniline membrane surfaces. ACS Appl Mater Interfaces 4:2752–2756. https://doi.org/10.1021/am300381v

    Article  CAS  Google Scholar 

  19. Benahmed WN, Bekri-Abbes I, Srasra E (2018) Spectroscopic study of polyaniline/AgCl@Ag nanocomposites prepared by a one-step method. J Spectrosc 2018:7320654. https://doi.org/10.1155/2018/7320654

    Article  CAS  Google Scholar 

  20. da Silva BN, Vieira MF, Izumi CMS (2022) In situ preparation of silver nanoparticles on polyaniline nanofibers for SERS applications. Synth Met 291. https://doi.org/10.1016/j.synthmet.2022.117171

  21. Rao GPC, Yang J (2010) Chemical reduction method for preparation of silver nanoparticles on a silver chloride substrate for application in surface-enhanced infrared optical sensors. Appl Spectrosc 64:1094–1099 https://opg.optica.org/as/abstract.cfm?URI=as-64-10-1094

    Article  CAS  Google Scholar 

  22. Proń A, Zagorska M, Nicolau Y, Genoud F, Nechtschein M (1997) Highly conductive composites of polyaniline with plasticized cellulose acetate. Synth Met 84:89–90. https://doi.org/10.1016/S0379-6779(96)03850-7

    Article  Google Scholar 

  23. Cerqueira DA, Valente AJM, Filho GR, Burrows HD (2009) Synthesis and properties of polyaniline–cellulose acetate blends: the use of sugarcane bagasse waste and the effect of the substitution degree. Carbohydr Polym 78:402–408. https://doi.org/10.1016/j.carbpol.2009.04.016

    Article  CAS  Google Scholar 

  24. Marques AP, Brett CMA, Burrows HD, Monkman AP, Retimal B (2002) Spectral and electrochemical studies on blends of polyaniline and cellulose esters. J Appl Polym Sci 86:2182–2188. https://doi.org/10.1002/app.11169

    Article  CAS  Google Scholar 

  25. Al-Ahmed A, Mohammad F, Zaki Ab M (2004) Rahman, Composites of polyaniline and cellulose acetate: preparation, characterization, thermo-oxidative degradation and stability in terms of DC electrical conductivity retention. Synth Met 144:29–49. https://doi.org/10.1016/j.synthmet.2004.01.007

    Article  CAS  Google Scholar 

  26. Wang Y, Shi Y-F, Chen Y-B, Wu L-M (2012) Hydrazine reduction of metal ions to porous submicro-structures of Ag, Pd, Cu, Ni, and Bi. J Solid State Chem 191:19–26. https://doi.org/10.1016/j.jssc.2012.02.059

    Article  CAS  Google Scholar 

  27. Gurusamy V, Krishnamoorthy R, Gopal B, Veeraravagan V, Neelamegam P (2017) Systematic investigation on hydrazine hydrate assisted reduction of silver nanoparticles and its antibacterial properties. Inorg Nano-Met Chem 47:761–767. https://doi.org/10.1080/15533174.2015.1137074

    Article  CAS  Google Scholar 

  28. Tatarchuk VV, Sergievskaya AP, Korda TM, Druzhinina IA, Zaikovsky VI (2013) Kinetic factors in the synthesis of silver nanoparticles by reduction of Ag+ with hydrazine in reverse micelles of Triton N-42. Chem Mater 25:3570–3579. https://doi.org/10.1021/cm304115j

    Article  CAS  Google Scholar 

  29. Nourafkan E, Alamdari A (2014) Study of effective parameters in silver nanoparticle synthesis through method of reverse microemulsion. J Ind Eng Chem 20:3639–3645. https://doi.org/10.1016/j.jiec.2013.12.059

    Article  CAS  Google Scholar 

  30. Szczepanowicz K, Stefanska J, Socha RP, Warszynski P (2010) Preparation of silver nanoparticles via chemical reduction and their antimicrobial activity. Physicochem Probl Miner Proces 45:85–98

    CAS  Google Scholar 

  31. Dugandžić V, Hidi IJ, Weber K, Cialla-May D, Popp J (2016) In situ hydrazine reduced silver colloid synthesis – enhancing SERS reproducibility. Anal Chim Acta 946:73–79. https://doi.org/10.1016/j.aca.2016.10.018

    Article  CAS  Google Scholar 

  32. Zielińska A, Skwarek E, Zaleska A, Gazda M, Hupka J (2009) Preparation of silver nanoparticles with controlled particle size. Procedia Chem 1:1560–1566. https://doi.org/10.1016/j.proche.2009.11.004

    Article  CAS  Google Scholar 

  33. Huang J, Kaner RB (2004) Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angew Chem Int Ed 43:5817–5821. https://doi.org/10.1002/anie.200460616

    Article  CAS  Google Scholar 

  34. Pouget JP, Jozefowicz ME, Epstein AJ, Tang X, MacDiarmid AG (1991) X-ray structure of polyaniline. Macromolecules 24:779–789. https://doi.org/10.1021/ma00003a022

    Article  CAS  Google Scholar 

  35. Tiwari JP, Rao CRK (2008) Template synthesized high conducting silver chloride nanoplates. Solid State Ionics 179:299–304. https://doi.org/10.1016/j.ssi.2008.01.097

    Article  CAS  Google Scholar 

  36. Medina-Ramirez I, Bashir S, Luo Z, Liu JL (2009) Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids Surf B: Biointerfaces 73:185–191. https://doi.org/10.1016/j.colsurfb.2009.05.015

    Article  CAS  Google Scholar 

  37. Ghaly HA, El-Kalliny AS, Gad-Allah TA, Abd El-Sattar NEA, Souaya ER (2017) Stable plasmonic Ag/AgCl–polyaniline photoactive composite for degradation of organic contaminants under solar light. RSC Adv 7:12726–12736. https://doi.org/10.1039/C6RA27957K

    Article  CAS  Google Scholar 

  38. Ćirić-Marjanović G, Trchová M, Stejskal J (2008) The chemical oxidative polymerization of aniline in water: Raman spectroscopy. J Raman Spectrosc 39:1375–1387. https://doi.org/10.1002/jrs.2007

    Article  CAS  Google Scholar 

  39. Trchová M, Morávková Z, Bláha M, Stejskal J (2014) Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim Acta 122:28–38. https://doi.org/10.1016/J.ELECTACTA.2013.10.133

    Article  Google Scholar 

  40. Boyer MI, Quillard S, Rebourt E, Louarn G, Buisson JP, Monkman A, Lefrant S (1998) Vibrational analysis of polyaniline: a model compound approach. J Phys Chem B 102:7382–7392. https://doi.org/10.1021/jp972652o

    Article  CAS  Google Scholar 

  41. do Nascimento GM, Constantino VRL, Landers R, Temperini MLA (2004) Aniline polymerization into montmorillonite clay: a spectroscopic investigation of the intercalated conducting polymer. Macromolecules 37:9373–9385. https://doi.org/10.1021/ma049054+

    Article  CAS  Google Scholar 

  42. do Nascimento GM, Silva CHB, Izumi CMS, Temperini MLA (2008) The role of cross-linking structures to the formation of one-dimensional nano-organized polyaniline and their Raman fingerprint. Spectrochim Acta A Mol Biomol Spectrosc 71:869–875. https://doi.org/10.1016/j.saa.2008.02.009

    Article  CAS  Google Scholar 

  43. Vos KD, Burris FO Jr, Riley RL (1966) Kinetic study of the hydrolysis of cellulose acetate in the pH range of 2–10. J Appl Polym Sci 10:825–832. https://doi.org/10.1002/app.1966.070100515

    Article  CAS  Google Scholar 

  44. Yamashita Y, Endo T (2004) Deterioration behavior of cellulose acetate films in acidic or basic aqueous solutions. J Appl Polym Sci 91:3354–3361. https://doi.org/10.1002/app.13547

    Article  CAS  Google Scholar 

  45. Sun Y, MacDiarmid AG, Epstein AJ (1990) Polyaniline: synthesis and characterization of pernigraniline base. J Chem Soc Chem Commun:529–531. https://doi.org/10.1039/C39900000529

  46. Green AG, Woodhead AE (1910) CCXLIII.—Aniline-black and allied compounds. Part I. J Chem Soc Trans 97:2388–2403. https://doi.org/10.1039/CT9109702388

    Article  Google Scholar 

  47. Mondal S, Rana U, Malik S (2015) Facile decoration of polyaniline fiber with Ag nanoparticles for recyclable SERS substrate. ACS Appl Mater Interfaces 7:10457–10465. https://doi.org/10.1021/acsami.5b01806

    Article  CAS  Google Scholar 

  48. Hildebrandt P, Stockhurger M (1984) Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J Phys Chem 88:5935–5944. https://doi.org/10.1021/j150668a038

    Article  CAS  Google Scholar 

  49. Majoube M, Henry M (1991) Fourier transform Raman and infrared and surface-enhanced Raman spectra for rhodamine 6G. Spectrochim Acta A 47:1459–1466. https://doi.org/10.1016/0584-8539(91)80237-D

    Article  Google Scholar 

  50. Shim S, Stuart CM, Mathies RA (2008) Resonance Raman cross-sections and vibronic analysis of Rhodamine 6G from broadband stimulated Raman spectroscopy. ChemPhysChem 9:697–699. https://doi.org/10.1002/cphc.200700856

    Article  CAS  Google Scholar 

  51. Jensen L, Schatz GC (2006) Resonance Raman scattering of Rhodamine 6G as calculated using time-dependent density functional theory. J Phys Chem A 110:5973–5977. https://doi.org/10.1021/jp0610867

    Article  CAS  Google Scholar 

  52. Zhu J, Sun L, Shan Y, Zhi Y, Chen J, Dou B, Su W (2021) Green preparation of silver nanofilms as SERS-active substrates for Rhodamine 6G detection. Vacuum 187:110096. https://doi.org/10.1016/j.vacuum.2021.110096

    Article  CAS  Google Scholar 

  53. Turley HK, Hu Z, Jensen L, Camden JP (2017) Surface-enhanced resonance hyper-Raman scattering elucidates the molecular orientation of Rhodamine 6G on silver colloids. J Phys Chem Lett 8:1819–1823. https://doi.org/10.1021/acs.jpclett.7b00498

    Article  CAS  Google Scholar 

  54. Michaels AM, Jiang L (2000) Brus, Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules. J Phys Chem B 104:11965–11971. https://doi.org/10.1021/jp0025476

    Article  CAS  Google Scholar 

  55. Kudelski A (2005) Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: do dye molecules adsorb preferentially on highly SERS-active sites? Chem Phys Lett 414:271–275. https://doi.org/10.1016/j.cplett.2005.08.075

    Article  CAS  Google Scholar 

  56. Ameer FS, Pittman CU Jr, Zhang D (2013) Quantification of resonance Raman enhancement factors for Rhodamine 6G (R6G) in water and on gold and silver nanoparticles: implications for single-molecule R6G SERS. J Phys Chem C 117:27096–27104. https://doi.org/10.1021/jp4105932

    Article  CAS  Google Scholar 

  57. Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803. https://doi.org/10.1021/jp0687908

    Article  CAS  Google Scholar 

  58. Lu C-H, Cheng M-R, Chen S, Syu W-L, Chien M-Y, Wang K-S, Chen J-S, Lee P-H, Liu T-Y (2023) Flexible PDMS-based SERS substrates replicated from beetle wings for water pollutant detection. Polymers (Basel) 15. https://doi.org/10.3390/polym15010191

  59. Wu H-Y, Lin H-C, Liu Y-H, Chen K-L, Wang Y-H, Sun Y-S, Hsu J-C (2022) Highly sensitive, robust, and recyclable TiO2/AgNP substrate for SERS detection. Molecules 27. https://doi.org/10.3390/molecules27196755

  60. Zhang W, Xue T, Zhang L, Lu F, Liu M, Meng C, Mao D, Mei T (2019) Surface-enhanced Raman spectroscopy based on a silver-film semi-coated nanosphere array. Sensors 19. https://doi.org/10.3390/s19183966

Download references

Acknowledgements

The authors would like to thank Dr Alexandre Cuin (Laboratório de Química Bioinorgânica e Cristalografia da UFJF) for assisting with DRX measurements.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES) — Finance Code 001, Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

Bismark Nogueira da Silva: conceptualization, methodology, investigation, formal analysis, writing — original draft. Victor dos Santos Azevedo: investigation, methodology and writing — review and editing. Frederico Garcia Pinto: methodology, writing — review and editing, investigation. Jairo Tronto: conceptualization, methodology, investigation, writing — review and editing. Celly Mieko Shinohara Izumi: conceptualization, resources, writing — review and editing, supervision.

Corresponding author

Correspondence to Celly Mieko Shinohara Izumi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 521 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, B.N., dos Santos Azevedo Leite, V., Pinto, F.G. et al. Preparation of silver nanoparticles on free-standing polyaniline/cellulose acetate blend film for surface-enhanced Raman scattering application. J Nanopart Res 25, 204 (2023). https://doi.org/10.1007/s11051-023-05853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05853-9

Keywords

Navigation